AVÊÓƵ

School of Engineering and Informatics (for staff and students)

Engineering Mathematics 2 (H1042)

Note to prospective students: this content is drawn from our database of current courses and modules. The detail does vary from year to year as our courses are constantly under review and continuously improving, but this information should give you a real flavour of what it is like to study at Sussex.

We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.

Engineering Mathematics 2

Module H1042

Module details for 2024/25.

15 credits

FHEQ Level 5

Module Outline

The Engineering Mathematics 2 module is divided into two sections. The first builds on the mathematics studied in the first year Engineering Mathematics1A and 1B modules by the further study of the solution of linear differential equations of various types, a topic of considerable importance in engineering analysis. These methods are then extended to cover methods of transforming linear differential equations into the frequency domain using the Laplace transform, a method that is central to the analysis of modern engineering control systems. A brief section then considers some basic methods for numerically solving first order ordinary differential equations. Solution methods for some of the partial differential equations common in engineering analysis, such as the heat and wave equations, are then detailed. The second section of the module introduces probability theory and statistical methods, illustrated with examples showing how these concepts can be used to gain estimates of the outcomes of the complex interactions that often occur in real engineering systems.

Module Topics
Revision of first order and second order differential equation time domain solution methods. Laplace transform and associated theorems; convolution. Solution of ODEs via the Laplace transform. Numerical solution of first order ODEs. Partial differential equations; separation of variables; outline of Fourier series solution; Laplace, Poisson, heat and wave equations. Probability: random variables; Bayes’ theorem; continuous and discrete distribution and density functions; expectations; normal distribution; central limit theorem; estimation of parameters; moment and maximum likelihood methods; student’s t-test; confidence intervals; quality control; acceptance sampling; reliability; failure rates; the Weibull distribution.

The syllabus thus addresses the AHEP4 Learning Outcomes: C1, M1; C2, M2; and C3, M3.

Pre-Requisite

Engineering Maths 1A
Engineering Maths 1B
Programming for Engineers

Library

Kreyszig, E., 2011, Advanced Engineering Mathematics, 10th Edition, Wiley

Stroud, K.A. and Booth, D., 2013 Engineering Mathematics, 7th edition. Basingstoke: Palgrave Macmillan

Riley K. F., Hobson M. P. and Bence S. J., 2004, Mathematical Methods for Physics and Engineering CUP 2nd edition

Chatfield C., 1989. Statistics for Technology, Chapman & Hall, 3rd edition.

Mendenhall W. and Sincich T., 1995, Statistics for Engineering and the Sciences, Prentice Hall, 4th edition.

Devore J. L., 2004, Probability and Statistics for Engineering and the Sciences, Thomson, 6th edition.
.
De Veaux R. D., Velleman P. F. and Bock D. E., 2005, Stats: Data and Models, Pearson.

Module learning outcomes

Understand the essential features and properties of ordinary differential equations;

Apply different solution methodologies to ordinary differential equations including classical linear theory, Laplace transforms, and numerical methods, in order to gain physical insight into solutions.

Apply solution methods to partial differential equations commonly encountered in engineering with examples of detailed solution methods for the heat and wave equations.

Understand the essentials of probability theory and statistics, and how inferences from sampled data can be quantified and used to make meaningful decisions.

TypeTimingWeighting
Unseen ExaminationSemester 1 Assessment80.00%
Coursework20.00%
Coursework components. Weighted as shown below.
Problem SetT1 Week 11 50.00%
Problem SetT1 Week 6 50.00%
Timing

Submission deadlines may vary for different types of assignment/groups of students.

Weighting

Coursework components (if listed) total 100% of the overall coursework weighting value.

TermMethodDurationWeek pattern
Autumn SemesterLecture1 hour33333333333
Autumn SemesterWorkshop1 hour01111111111

How to read the week pattern

The numbers indicate the weeks of the term and how many events take place each week.

Dr Rupert Young

Assess convenor
/profiles/9832

Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.

The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.

School of Engineering and Informatics (for staff and students)

School Office:
School of Engineering and Informatics, AVÊÓƵ, Chichester 1 Room 002, Falmer, Brighton, BN1 9QJ
ei@sussex.ac.uk
T 01273 (67) 8195

School Office opening hours: School Office open Monday – Friday 09:00-15:00, phone lines open Monday-Friday 09:00-17:00
School Office location [PDF 1.74MB]