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Chapter 1

Introduction

Communication and concurrency are the two fundamental concepts which are used to model and

understand complex dynamic systems. A large system can be realised as a collection of many

parts and, because autonomous agents go about their business independently, many isolated agents

acting concurrently do not model systems well. In particular, they fail to capture the unified

behaviour of the system, viewed holistically. We have come to accept that this aspect of systems

can be modelled well by interaction or communication. This is the basic tenet of concurrency

theory, or process calculus, that has given rise to a large body of work over the last few decades.

The first theory of concurrency might be considered to be the theory of Petri nets, [82, 92, 83].

These models arose as a generalisation of automata in which actions or events may be performed

concurrently, but what was somehow absent from the net model approach was an appreciation

of the structure of large systems, in particular, the idea of small components interacting to form

a whole. These considerations were to be recognized in later years in the wake of the study of

processes. Seemingly independently, theories of processes were developed around the idea of

communicating agents, performing atomic, indivisible, actions, [7, 50, 70]; the calculi presented

in [6, 74, 51] are the fruits of extensive research into processes, [10, 15, 44, 69, 71, 80] for example.

These calculi all provide syntactic descriptions of communicating agents and, in the so-called pure

forms of these languages, communication is modelled solely by synchronisation so that the fact

that actual data may be transmitted from one agent to another is abstracted away. This is a perfectly

valid abstraction for theoretical purposes but for many specifications one wishes to retain certain

fundamental aspects of communication. For example, one may wish to describe protocols where

actual messages are being sent between agents and future behaviour depends upon the content
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is closely related to transition systems quotiented by bisimulation equivalence [2]. Bisimilarity

is coinductively defined and proofs of equivalence by finding witnessing bisimulation relations

provide an elegant example of coinductive reasoning. A measure of the success of bisimulation

is that transition systems and bisimulation equivalence are now also being used as a convenient

model of and coinductive proof technique for sequential computation in the functional setting

[31, 32].

We have been describing what is referred to as strong bisimulation equivalence. There is in fact

a much coarser notion of bisimulation equivalence called weak bisimulation. The distinguishing

property of weak bisimulation is that communication is no longer treated as an observable action.

In CCS this is codified by denoting the act of communication explicitly using a dummy symbol τ.

Strong bisimulation takes τ actions into account and keeps track of internal computations whereas

weak bisimulation treats this as unobservable and abstracts from them. We consider bisimulation

based equivalences exclusively in this thesis and refer the reader to [52] for a treatment of the

semantics of testing equivalence for value-passing languages.

One might argue that labelled transition systems are perfectly adequate to model the actual

behaviour of systems. Their appropriateness seems to lie in their ability to capture the branching

structure of processes, which is clearly the interesting part of process behaviour in the concurrent

setting. However, in order to model a value-passing process as a labelled transition system we need

to invoke Milner’s ubiquitous encoding and the structural integrity of the process is compromised.

A proposal for modelling value-passing processes directly in some sort of first-order transition

system is found in [40]. Hennessy and Lin propose symbolic graphs as a suitable generalisation

of transition systems.

We use the term symbolic to represent the fact that a syntactic approach to data is adopted in

order to build our graphs. Thus, values and value-expressions are uninterpreted and are represented

solely by their function symbols. With this in mind, one might consider syntactic graphs to be a

acceptable alternative name for symbolic graphs. We prefer to use the term symbolic to reflect its

usage in the work of Burch et al [17]. The more general use of the word symbolic in [17] refers

to finding an appropriate representation of a problem’s state-space, rather than working with the

state-space explicitly. For example, using BDDs to represent transition relations and formulas for

model checking in the modal µ-calculus, [23], is an instance of a symbolic approach. Our symbolic

graphs provide a symbolic representation of the 26(n)-201.363(s)-5.520113r



Chapter 1. Introduction 4

p0[0=x] : : :

�

p

c?1

55

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

c?0

;;

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

c?0

))

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

c?1

##

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

p0[1=x] : : :

p0[0=x] : : :

p0[1=x] : : :

q

c?1
55

k

k

k

k

k

k

k

k

k

k

k

k

k

k

c?0

<<

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

c?0

))

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

c?1

$$

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

�

�

It is clear to see that the transition system models of p and q are identical. The standard

notion of bisimulation for value-passing processes that one obtains via Milner’s encoding into

pure languages, and adopting Park’s original notion of bisimulation [80] for the resulting transition

systems, is called early bisimulation [75]. It is no surprise that p and q are deemed to be early

bisimilar. There is an acceptable alternative definition of
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say, because such a question depends ultimately on the domain of values used and the expressivity

of the data expressions allowed. The algorithms for partial
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is the fact that the work is parametric with respect to data domains that demands that verifica-

tions be relative to data. Throughout the thesis we will occa
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that declarations used for defining recursive processes yield unique behaviours. The property of

bisimulation equivalence we exploit is that, given a declaration

X (= E

and two processes p and q such that p is bisimilar to E[p=X ] and q is bisimilar to E[q=X ], then

p and q must themselves be bisimilar. This property does not hold for arbitrary process descrip-

tions E, but is guaranteed for guarded descriptions where occurrences of X in E are within the

scope of an action prefix. The same property holds for processes with respect to trace equivalence,

[51]. It is shown in [74] that this proof technique alone, along with rules for removing unguard-

edness is sufficient for characterising bisimulation equivalence for regular process terms. This is

unsurprising as the unique fixpoint induction proof rule seems to capture the coinductive flavour

of bisimilarity perfectly. The principle can be expressed as an inference rule

` p = E[p=X ]

` p = X

where X (= E
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Figure 1.1. Chapter dependencies

intuitive generalisation of the unique fixpoint induction rule, which is derivable from Hen-

nessy and Lin’s proposed rule, can be used to lift the restriction on parameters. We show

relative completeness with respect to strong bisimulation for guarded regular processes. Ex-

tending this work further, we go on to characterise observation congruence and discover that

the familiar τ laws due to Milner [74] can still be used to abstract from internal actions. A

discussion on the relationship between parameterisation and parallel composition for value-

passing languages is given and we conclude the chapter with an example equivalence proof.

- We end the thesis with a short chapter stating our conclusions and avenues for future re-

search.

1.4.1 Pre-requisites

Although we review the basic definitions of transition systems, bisimulation and value-passing

CCS, familiarity with pure process calculi would be a distinct advantage in reading this thesis. We

refer the reader to the textbooks [74, 51, 6] for a good introduction to the subject. Issues relating

to value-passing semantics are explained in full and no prior experience with such languages is

required. The property logic, first-order µ-calculus, presented in Chapter 5 is based on the modal

µ-calculus due to Kozen and Pratt [61, 88], and acquaintance w
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2.2.1 Morphisms of data languages

Given two data languages D = (Var;ΣV ; I;Pr) and D0

= (
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n
b;τ
7�! n0

[n;δ] τ
�! [n0;δ]

δ j= b

n
b;c!e
7�! n0

[n;δ] c!v
�! [n0;δ]

δ j= b;v = [[e]]δ

n
b;c?x
7�! n0

[
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τ:p τ
�! p c!e:p

c![[e]]
�! p

8v 2Val

c?x:t
c?v
�! t[v=x]

p
α
�! p0
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To show p�tt q we must find matching partitions and moves for each of the transitions from

both p and q. We describe the matches for the transition p
tt;c?x
7�! p0. What we require is a tt-partition

such that for each boolean b in this partition we know that b guarantees a c?x transition from q

to a node which is at least b related to p0. The partition we require then is feven(x);odd(x)g. If

we take even(x) we see that q
tt;c?x
7�! q00 with p0 �even(x) q00 and for odd(x) we use q

tt;c?x
7�! q0 with

p0 �odd(x) q0. No further partitioning is required and we note that the bound variable x occurs in

the partition making this an early rather than late bisimulation.

We previously suggested that symbolic bisimulation ought to be preserved by concretion. This

amounts to saying that

t �tt u implies tδ � uδ for all δ:

The relationship between concrete and symbolic bisimulation is in fact much tighter.

Proposition 2.5.4 t �b u if and only if tδ� uδ for all δ j= b.

Proof See [40] �

2.6 Symbolic graphs with assignment

A shortcoming of symbolic graphs is that, although they are good at modelling infinitely branch-

ing processes finitely, there are still many value-passing processes which are intuitively finite in

structure, but are modelled by infinite symbolic graphs. For example, the process X(0) declared

by

X (= λx:c!x:X(x+2)

repeatedly outputs the sequence of even numbers on c. The structure of this process is very simple:

there is a single state from which there is a c output transition. The actual transition graph, which

also happens to be the symbolic graph, for this process looks like

X(0)
c!0

// X(2)
c!2

// X(4)
c!4

//

: : :

An infinite graph is being used to model a relatively simple structure.

One approach to rectifying this situation was presented, independently, by Lin and Paczowski,

[65, 78]. There was also a similar solution prescribed in [96] using a different formalism to

symbolic graphs. Lin and Paczowski’s solution involved introducing explicit assignments, or sub-

stitutions into the arcs of the graphs. Thus regular behaviours such as the example X(0) can be

described by their transitions along with a substitution to describe how the data part of the process

is affected by transition. The symbolic graph with assignment for X(0) now looks like

�

x:=0 ; c!x
//

fxg
*+

-,/.

x:=x+2 ; c!x

��

More generally, a symbolic graph with assignment is a symbolic graph whose edges are now

labelled with a triple (b;θ;α) where b 2 BoolExp, α 2 Act and θ is an assignment x̄ := ē. We

write m
b;θ;α
7�! n to denote arcs of the graph and ask that f v(b; ē)� f v(m), f v(α)� x̄ and f v(n)�

x̄[bv(α).
Symbolic graphs with assignment can be unfolded into symbolic graphs in a similar manner to

saturating a symbolic graph with substitutions. Rather than using simple substitutions, however,

we saturate with arbitrary substitutions. Thus, we can create a symbolic graph, roughly, by the

rule

m
b;θ;α
7�! n

(m;σ) bσ;αθσ
7�! (n;θσ)
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This allows us to define symbolic bisimulation over graphs with assignment simply by asking that

their respective symbolic graphs be bisimilar.

An important feature of graphs with assignments is that any term of regular, value-passing

CCS, that is, the sublanguage without parallel composition and restriction, is modelled by a finite

graph with assignment. This fact is exploited in [65, 78] in order to present an algorithm for

reducing the decidability of strong bisimulation down to deciding validity of boolean expressions

about data. The particular language that these boolean expressions are described in is essentially

first-order predicate logic with parameterised fixpoints.

In Chapter 6 we present a proof system for reasoning about regular value-passing CCS pro-

cesses. We don’t use symbolic graphs with assignment explicitly although one might



Chapter 3

Strong Bisimulation for a Calculus of

Broadcasting Systems

We turn to the world of broadcasting systems for our first demonstration of the symbolic tech-

nique. The language we consider is CBS, a value-passing process calculus where communication

between agents is effected by the broadcasting of values. The language is similar in style to

value-passing CCS but has a multiway synchronisation opera
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Discard Input Output

O
w:
�!O

w 62 S

x 2 S?t
w:
�! x 2 S?t

v 2 S

x 2 S?t
v?
�! t[v=x]

e!p
w:
�! e!p

[[e]] = w

e!p
w!
�! p

8i 2 I � pi
w:
�! pi

∑I pi
w:
�! ∑I pi

9i 2 I � pi
v?
�! p0

∑I pi
v?
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EQUIV
p = p

p = q

q = p

p = q q = r

p = r

AXIOM
p = q 2 Axioms

p = q

CONG
p1 = q1 p2 = q2

p1 + p2 = q1 +q2

α-CONV
x?t = y?t[y=x]

y 62 f v(t)

cl-INPUT
∑i2I τ!ti[v=x] = ∑ j2J τ!u j[v=x] for every v 2Val

∑i2I x?ti = ∑ j2J x?u j

OUTPUT
p = q; [[e]]= [[e0]]

e!p = e0!q

BOOL
[[b]] = tt

b� p = p

[[b]] = ff

b� p = O

Figure 3.2. Inference Rules

value by a process p is considered to be identical providing that the future behaviour of p does not

depend upon the receipt of the value. This means, for example, that

v!p+x?v!p �n v!p

for any process p. Note that p is closed so x does not occur freely in v!p and therefore cannot affect

the future behaviour of the term v!p. Indeed if q is any process which can discard, i.e. q
:

�!, then

q+x?q �n q

because q can discard any value. This in turn means that

w!(q+x?
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x?t = x?u
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EQUIV
tt� t = t

b� t = u

b�u = t

b� t = u b�u = v

b� t = v

AXIOM
t = u 2 Axioms

tt� t = u

CONG
b� t1 = u1 b� t2 = u2

b� t1 + t2 = u1+u2u u u BD �3895 Tf
58.8 6.95977220.08 59(V)-1.-
1 0 0 -1120 0.24 Tf
1 0 0 -1 210.24 534.q
10 0 0 10 0 0 cm BT80 1 210.95 Tf
1 0 0 1 48930 1  Tm
[(t)3(t)2.99683]TJ
/R120 0.24 Tf
1 0 0 -1 210 602.38 Tm
(�)Tj
/R24 10.95 Tf
1 0 0 1 4794.8 1982. Tm
[(t)-6.93181]TJ
/R49 0.24 Tf
1 0 0 -1 224794.8 198uu(XI)76(s)-5.52048]TJ
ET
Q
q 781441 224Tf
18759(M)f
1 0 0 -1N
1 0 0 -1 P
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Proof See [41]. �

Using the modified proof system for open terms we now show that the axioms A, along with

a generalisation of axiom schema cl-Noisy to open terms, provide a sound and complete axioma-

tisation for strong noisy congruence over SA. The generalisation of cl-Noisy is

Noisy : e!(t! +x?t!) = e!t! if x 62 f v(t!)

where t! is a term of the form

∑
i2I

bi � ei!ti:

Note that any closed instantiation of such a term discards every transmitted value since it can not

receive an input. Allowing a slight abuse of notation let us again use AN to refer to the axioms A
along with the generalised axiom Noisy . We also write AN ` b� t = u to mean that b� t = u can

be derived in the proof system of Figure 3.3 from the axioms in AN .

Lemma 3.2.4 (Axiom Noisy is sound) For all δ, if x 62 f v(t!) then (e!(t! + x?t!))δ'n (e!t!)δ.

Proof Consider an arbitrary closed instantiation of Noisy : w!(p + x?p) 'n w!p and p has the

form p!. It is sufficient to show that p+ x?p �n p. Let I be the identity relation over agents.

We show that I 0 = I [f(p+x?p; p)g
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Proof As in [41], we use Proposition 3.2.6 to prove that whenever S is a noisy symbolic bisimu-

lation then

RS
de f
=

n

(tδ;uδ) j 9b �δ j= b and (t;u) 2 Sb
o

is a noisy bisimulation. Similarly, whenever R is a noisy bisimulation then

Sb
R

de f
= f(t;u) j δ j= b implies (tδ;uδ) 2 R g

forms a noisy symbolic bisimulation. The result follows easily from this. We should note here

that the proof of this theorem demands a great expressiveness of the boolean metalanguage. Es-

sentially, we require the power to describe given sets of environments. This issue is discussed in

[40]. �

A typical property one requires in order to prove completeness of a proof system is the ability

to transform terms into certain syntactic forms. We make use of two types of these syntactic forms:

standard forms which allow us to isolate the individual summands of a term, and normal forms

which afford a tighter analysis of the boolean guards contained within a term.

Firstly, a term t is said to be in standard form if it is of the form

∑
i2I!

bi � ei!ti + ∑
i2I
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Using CASE and Proposition 3.2.3 we can obtain, for each K,

` cK � t = ∑
K

cK � (∑
k2K

αk:tk):

Thus, given that
W

cK = tt, CASE gives

` tt� t = ∑
K

cK � (∑
k2K

αk:tk):

It is clear that the depth of the term t is unchanged as a result of these transformations. �

As an example of how the mutually exclusive guards of normal forms can be useful we refer

the reader to [41], Proposition 3.7 and note that the proof there can also be used to conclude that

INPUT�
b�∑i2I ci � τ!ti = ∑ j2J d j � τ!u j

b�∑i2I ci � x?ti = ∑ j2J d j � x?u j

(where x 62 f v(b;ci;d j)) is a derived rule of the proof system.

Given a standard form t � ∑i2I bi � αi:ti we notice that we can give boolean conditions to

describe when t can input or discard. For instance, we know that the boolean b will guarantee that

t has the ability to receive a value if b j=
W

I?
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theorem for finite CCS terms with respect to weak bisimulation congruence �c, [74], page 156,

relies on a similar relationship between weak bisimulation
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Suppose that u+ x?u
d j;e!
7�! u jl. Then, as before, we use the fact that t �b00

n u to get a matching

partition and move. Suppose that u+x?u
d;x?
7�! u0. By assumption, d is d j or tt. Clearly d cannot be

d j because, as we have already established, u
d j;x?
7�!6 u0. Thus d must be tt and u0 must be u. Again,

b00 partitions itself to get the matching move t
ci;x?
7�! tik.

Case 2 There exists a u
d j;x?
7�! u0 such that for all t

ci;x?
7�! tik, u0 6�b00

n tik. Symmetrical argument of

Case one which yields t+x?t 'b00

n u and b0 j= DC(t).

Case 3 Neither of the above. That is, for every t
ci;x?
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We also need the single axiom



Chapter 3. Strong Bisimulation for CBS 45

We know that x 2 I(q)� I(p)?p
v?
�! p whenever v 2 I(q)� I(p). So we require a match from

q. q
v?
�! q0 as v 2 I(q) and v 62 I(p) so p

v:
�! p. Because p �n q
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So let us fix a particular v 2 S
j

l
and see how this can be inferred. We know that v 2 Sl and

t j[v=x] �n ul[v=x]. For convenience let p;q denote t j[v=
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clearly makes no sense to ask what I(tt;
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other words b^b0 j= :b00j for each j. Given this we can apply induction to obtain I(tδ) = I(t1δ) =
I(b^b0; t1). But this set is clearly empty. Hence I(tδ) = I(b; t) = /0.

So we must consider the case where K is non-empty. By uniformity we must have that b j= b0.

This follows because each bk in K is of the form b0 ^ b00k for some b00k . In this case b
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Discard Input Output

O
tt;Val:
7�! O

x 2 S?t
tt;ValnS:
7�! x 2 S?t

x 2 S?t
tt;x2S?
7�! t

e!t
tt;Val:
7�! e!t e!t

tt;e!
7�! t

t
b;S:
7�! t u

b0

;S0:
7�! u

t +u
b0

^b;S\S0:
7�! t +u

t
b;x2S?
7�! t 0

t +u
b;x2S?
7�! t 0

t
b;e!
7�! t 0

t +u
b;e!
7�! t 0

b0� t
:b0

;Val:
7�! b0� t

t
b;S:
7�! t

b0� t
b;S:
7�! b0� t

t
b;x2S?
7�! t 0

b0� t
b0

^b;x2S?
7�! t 0

t
b;e!
7�! t 0

b0� t
b0

^b;e!
7�! t 0

Figure 3.5. Patterned abstract operational semantics

the extension is a conservative one. The transitions relations are, as before, labelled with boolean

values acting as guards. The differences occur in transitions of the form
b;x2S?
7�! now decorated with

the patterned input, and
b;S:
7�! where S records the set of values which may be discarded. Our next

move is to present the notion of a patterned noisy symbolic bisimulation which takes into account

that a term demanding a matching transition for t
b;x2S?
7�!



Chapter 3. Strong Bisimulation for CBS 50

- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a b^ b1 ^ z 2 S-partition,

B, such that for each b0 2 B there exists a u
b2;y2S0?
7�! u0 such that b0 j= b2; b0 j= z 2 S0 and

t 0[z=x]�b0

pn u
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4. S 6= /0;S0 6= /0.

By Theorem 3.3.7 there exists t 0;u0 such that ti �
b00

pn t 0 and u j �
b00

pn u0 and d(t 0)< d(t
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Writing S̄K
de f
=

T

k2K

(Val�Sk), let

Exp(t j u) = ∑
i2I!; j2J?

(ci^d j ^ei 2 S j)� ei!(ti j u j[ei=x])

+ ∑
i2I? ; j2J!

(ci^d j ^e j 2 Si)� e j!(ti[e j=x] j u j)

+ ∑
i2I!;K�J?

(ci^
V

k2K:dk^ei 2 S̄J?�K)� ei!(ti j u)

+ ∑
j2J!;K�I?

(

V

k2K:ck ^d j ^e j 2 S̄I?�K)� e j!(t j u j)

+ ∑
i2I?; j2J?

(ci^d j)� x 2 Si\S j?(ti j u j)

+ ∑
i2I? ;K�J?

(ci^
V

k2K:dk)� x 2 (Si\ S̄J?�K)?(ti j u)

+ ∑
j2J? ;K�I?

(

V

k2K:ck ^d j)� x 2 (S j\ S̄I?�K)?(t j u j):

Figure 3.6. Expansion laws for CBS parallel

Proof This can easily be proved directly from the operational semantics. �

To accommodate the translation functions we use the following coding defined inductively on

terms. This coding requires that we extend the signature of the data-domain with the function

symbols used to express the f and g translation functions. Let g�1
(S) = fv2Val j g(v)2 Sg. Note

that τ 62 g�1
(S) as τ 62 S and g is strict. We use Λ to denote a function from Var to translation

functions and we let eΛ denote the substitution e[g(x)=x j x 2 f v(e);g = Λ(x)].

- hOi
( f ;g;Λ)

= O

- he!ti
( f ;g;Λ)

= f (eΛ)!hti
( f ;g;Λ)

- hx 2 S?ti
( f ;g;Λ)

= x 2 g�1
(S)?hti

( f ;g;Λ[g=x])

- hb� ti
( f ;g;Λ)

= bΛ�hti
( f ;g;Λ)

- h∑i2I tii
( f ;g;Λ)

= ∑i2Ihtii( f ;g;Λ)

- ht
( f 0;g0

)

i

( f ;g;Λ)

= hti
( f � f 0;g0

�g;Λ)

The idea here is to ensure that any broacast transmission from hti
( f ;g;Λ)

is translated using the

function f . When a process p
( f ;g) appears to receive a value v we expect the continuing process

to be something of the form p0[v=x] but we see by the operational semantics, Figure 3.1, that the

process p
( f ;g), whilst appearing to receive v, actually receives the value g(v) and continues to

behave like p0[g(v)=x]. To capture this behaviour in the coding we need to record, using the Λ
function, exactly which translation g was used when x became unbound and then subsequently use

that translation wherever x occurs.

Lemma 3.4.2 If Λ(x) = Id then hti
( f ;g;Λ[h=x])δ[v=x]� hti

( f ;g;Λ)

δ[h(v)=x].

Proof Structural induction on t. the interesting cases are when t is a prefixed term.

Suppose t is e!t 0. then

hti
( f ;g;Λ[h=x])δ[v=x]� f (eΛ[h=x]δ[v=x])!ht (

;g;L[h=L

])

δ [v=
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� if p # v then q
ε

=) q0 for some q0 such that q0 # v

� if q # v then p
ε

=
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T2 α:(X +τ:Y)+α:Y =ccs α:(X +τ:Y ).

T3 X +τ:X =ccs τ:X .

Unfortunately the obvious versions of T1 and T3 for CBS are not sound. We have already

seen, for example, that p is not, in general, weakly bisimilar to τ!p which implies that v!τ!p 6�
=

v!p.

For T3, p+τ!p = τ!p, we run into difficulties when p is allowed to recieve a value v, say. For then

τ!
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(i) p
w!
=) p0 implies p

w!
�! p0.

(ii) v 2 I(p) and p
v?

=) p0 implies p
v?
�!

ε
=) p0.

(iii) v 2 I(p) and p
τ!v:
=) p0 implies p

v?
�! p0.

The side condition that v 2 I(p) in cases (ii) and (iii) should be clear; we anticipate that we

can prove p congruent to a saturated version of p. In order to do this we must not introduce any

new input actions into the saturated version of p by pulling a v? action, say, out from behind a τ
action. The condition v 2 I(p) guarantees that any input action introduced was already possible.

Lemma 4.2.2 (Derivation Lemma) For any standard form p 2 SPA; p
w!
=) q implies APτ `cl

p = p+w!q.

Proof By induction on the length of the derivation p
w!
=) q.

The base case is straightforward: If p
w!
�! q then w!q is a summand of p because p is standard.

Idempotence of + gives the proof APτ `cl p = p+w!q.



Chapter 4. Weak Bisimulation for CBS 62

Now we know that APτ `cl p = p+ τ!p0 by the Derivation Lemma. We also know that we can

prove APτ `cl p0 = p0+x 2 S?q0 for some set S and some term q0 such that v 2 S and q0v is q0[v=x].

Combining these gives

APτ `cl p = p+τ!(p0+x 2 S?q0):

Now axiom Tau3 would be applicable if S � I(p)
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� Suppose there exists a pτ such that p
τ!
�! pτ and for each q0 such that q

τ!
=) q0 we have

pτ
6� q0. In this case we show that (iii) holds.

We first notice that

I(p+x 2 S?p) = I(p)[ I(x 2 S?p)

= I(
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1. U =
/0

Here we have p �
=

q
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Proof



Chapter 4. Weak Bisimulation for CBS 67

- t
b1;e!
7�! t 0 there exists a b^b1-partition, B, and for each b0 2 B there exists a u

b2;e
0!

=) u0 such that

b0 j= b2; b0 j= e = e0 and t 0 �b0

u0

- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b;T;U) and a b^

b
^

2 B
CBt
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(iii) Again, we assume, without loss of generality, that t is a standard form. We know that

t
b0

;τ!S0:
=) t 0 so suppose

t
b1;τ!
=) u

b2;S
0:

7�! u
b3;ε
=) t 0

where b0 = b1^b2^b3. Suppose also that u? � ∑I?
bi � x 2 Si?ui. Then

b2 =

^

j2J

:b j and S0 =
\

j2I?nJ

(Val nS j)

for some discard index J � I?. We let Bu = fb^bK j K � I?g be a u-uniform b partition and

observe that whenever j 2 K\J we have that b^bK j= b j and b^bK j= b2 j= :b j. Reading

this contrapositively we have that b^bK 6= ff implies K\J =
/0.

Our intention is to prove

APτ ` b^bK �τ!u = τ!(u+x 2 S?u)

by applying axiom P-Noisy (or ABSURD when b^bK = ff) to u for each b^bK. In order to

do this we need to show that S\ I(b^bK;u) = /0 whenever b^bK 6= ff.

Suppose then that b^ bK 6= ff and suppose for contradiction that v 2 S\ I(b^ bK;u). This

means that v 2 S and v 2 S j0 for some j0 2 K. But v 2 S � S0 implies that v 2 S0 =
T

j2I?nJ(ValnS j), that is v 62 S j for each j 2 I? nJ. Therefore j0 62 I? nJ and we conclude that

jJ
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We obtain the result using P-Noisy and Tau1 . Assume then that S is not empty. We cannot

apply induction immediately because the joint depths of the terms has not decreased. However,

the Decomposition Theorem 4.3.3 gives terms t 00 and u00 such that d(t 00) < d(t 0), d(u00) < d(u0),

t 00 �b00

t 0 and u00 �b00

u0. Without loss of generality we assume that d(t 0) � d(u0). By induction it

follows that APτ ` b00�τ!t 0 = τ!t 00, whence APτ ` b00� z 2 S?t 0 = z 2 S?t 00 by P-INPUT. It is clear

that

t 0+x 2 S?t 00 �
=

b00

u0+x 2 S0?u0+τ!u0

and induction is applicable here yielding

APτ ` b00� t 0+x 2 S?t 00 = u0+x 2 S0?u0+τ!u0:

Using the previous result we can substitute t 0 for t 00 and apply TAU and axiom P-Noisy to get

APτ ` b00�τ!t 0 = τ!(u0+x 2 S0?u0+τ!u0):

the result follows as in the case where S is empty. Application of CASE and Idempotence will

now yield

APτ ` bu�τ!t 0+τ!u0 = τ!u0:

�

This finishes our completeness proof. The result can be lifted to cope with finite CBS by

using the codings of Section 3.4 in exactly the same way as the proof systems for strong noisy

congruence. This provides CBS with a powerful equational theory of observation congruence.

Recall that the congruence we considered was derived from barbed bisimulations using an early

semantics for CBS — we seem to have neglected the late semantics entirely. Therefore we end

this Chapter with some comments about late bisimulations in CBS.

4.4 A late semantics for CBS?

We consider what the late semantics for CBS might be and argue that they do not make good

computational sense in this paradigm. We recall from Chapter 2 that the move to a late semantics

involved breaking up a reception c?x:t
c?v
�! t[v=x] into two parts: First we consider the move

c?x:t
c?
�! (x)t

to a ?-abstraction, that is a function from Val
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semantics is not at all clear. The reason for this is that the communication protocol is driven by

agents’ reactions to values being offered. The agent p and q respond to the value 1 by receiving

and discarding respectively, but they respond to the value 2 by both receiving. The problem here

is that the late semantics for p want to treat the values 1 and 2 in one block of values. There is a

single input move from p, this being

p
f1;2g?
�! (x 2 f1;2g)t;

which demands a single reaction from q, but of course q cannot provide a single reaction to this

transition. For this reason we consider the multiway rendezvous of CBS to be unsuitable to support

a late semantics and do not pursue this issue any further.
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some form of parameterisation. If we call this parameter z we would have the formula

νX :ha!xi(x = z+2)^X(x=z):
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where B is some boolean condition on data variables, t is the node of a symbolic graph, and F is a

formula of first-order µ-calculus with free data variables.

We illustrate how we generalise the proof system a little with the following example. Consider

the fixpoint formula

A� νX :ha!xi(x =
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where A00 is as A0 but with (z = 1; t) also in the tag set. Once again we apply rule Subst using the

boolean z = 0. Notice that z = 1 j= (z = 0[z�2 1
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F ::= B j F _F j F ^F j hτiF j [τ]Fjhc!xiF j [c!x]F j hc?iG j [c?]G j A:(ē=x̄)

G ::= 9x:F j 8x:F

A ::= X j νX [A]F j µX [A]F

Figure 5.1. Grammar for the logic

main syntactic category of modal formulae while G ranges over quantified formulae. The modal

operators hc!xi and [c!x] act as binders for the variable x as do the quantifiers 9x and 8x; write

f v(F) for the free data variables of F . This notion is clear for formulae without fixpoints. Finally

A ranges over fixpoint abstractions but these may only be used to define modal formulae by the

construction A:(ē=x̄). This denotes the application of the abstraction A to the substitution [ē=x̄].

This construction binds all of the free data variables of x̄ in A, thus we have that

f v(A:(ē=x̄)) = f v(e)[ ( f v(A)nfx̄g)

where f v(e) is given by the data-domain and f v(A) is defined by

f v(νX [A]F) = f v(µX [A]F) = f v(A)[ f v(F) and f v(X) =
/0:

The definition of f v(A) is the obvious one. A formula F is called recursion closed if FV(F) is

empty and is called data closed if f v(F) is empty. If A is of the form νX [A]F or µX [A]F
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one proposed in [43] where it is shown to be characteristic for late bisimulation equivalence. We

see that the fixpoints provide no extra distinguishing power over processes.

Proposition 5.1.1 t �b
L u if and only if for all recursion closed formulae F with empty tag sets,

t j=b F iff u j=b F

Proof Suppose δ j= b, and let p;q denote [t;δ] and[u;δ] respectively. The if direction is proved in

[43] because finite formula suffice to distinguish non-bisimilar processes. We show the converse.

Suppose p�L u. We need to show p 2 [[F]]ρδ iff q 2 [[F]]ρδ. The difficulties arise in the cases

of fixpoint formulae. We cannot deal with fixpoints directly but it is sufficient to show that the

result holds for their ordinal unwindings. It is well known that [[µX :F]]ρδ =

S

α[[µ
αX :F]]ρδ, [61],

where the µ-formulae annotated with an ordinal are interpreted as

[[µ0X :F]]ρδ =
/0

[[µα+1X :F]]ρδ = [[F[µαX :F=X ]]]
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Id
B ` t : B

Case
B1 ` t : F; : : : ;Bn ` t : F
W

1�i�n Bi ` t : F

Cons
B1 ` t : F

B2 ` t : F
(B2 j= B1) Ex

B ` t : F

9x:B ` t : F
(x 62 f v(t;F))

α B ` t 0 : F 0

B ` t : F
(t 0 � t; F 0

� F) ^

B ` t : F1 B ` t : F2

B ` t : F1^F2

_L
B ` t : F1

B ` t : F1_F2
_R

B ` t : F2

B ` t : F1 _F2

hτi B ` t 0 : F

B^b ` t : hτiF t
b;τ
7�! t 0

[τ]
B^b1 ` t1 : F; : : : ;B^bn ` tn : F

B ` t : [τ]F
where f(b1; t1); : : : ;(bn; tn)g= f(b; t 0) j t

b;τ
7�! t 0g

hc!i
B ` t 0 : F[e=x]

B^b ` t : hc!xiF
t

b;c!e
7�! t 0

[c!]
B^b1 ` t1 : F [e1=x]; : : : ;B^bn ` tn : F [en=x]

B ` t : [c!x]F

where f(b1; t1;e1); : : : ;(bn; tn;en)g= f(b; t 0;e) j t
b;c!e
7�! t 0g

hc?i
B ` (y)t 0 : G

B^b ` t : hc?iG
(t

b;c?
7�! (y)t 0)

[c?]
B^b1 ` (y1)t1 : F; : : : ;B

b:0.24()Tj
7781]())Tj
/R61Tm
[(B)-
3.6 0Td
[(1)-10]TJ
/R61 0.24 Tf
1 0 0 -1 174.72 253.66 Tm
(`)Tj
/R49 0.24 T28 Tm
92 0 Td
(()Tj
/R24 10.95 Tf
1 0 0 1 324.4818 Tm
[(t)-6.93181]TJ
/R24 8 Tf
3.11992 -Tm
[308 Td
[(1)-10]TJ
/R49 0.24 Tf
1 0 0 -1 1930 0 053.66 Tm
())Tj
/R2 10.95 Tf
1 0 0 1 299.28 421.18 Tm
[(t)-6.93181]TJ
/R24 8 Tf
3.11992 -1.68008 Td
[(1)-10]TJ
/R11 10.95 Tf
6.48008 1.68008 Td
[[(:)-6.9307]TJ
/R24 11905 Tf
5.28008 0Tf
6.6 04-2.69781]TJ
ET
Q
q 763.2 0 0 -4.8 1379.76 4895.56 cm
BI
/IM true
/W 1
/H 1
/BPC 1
ID �
EI Q
6 0 04235.4435(;)]TJ
/R24 10.95 Tf
1 0 0 1 246.48 253.619.11995.4435(;81]TJ
/R61 0.24 Tf
1 0 0 -1 22192 25.4435(;)])Tj
/R24 10.95 Tf
1 0 0 1 206.64 438.7 Tm
[(t)-6.93181]TJ
/R11 10.95 Tf
6.23984 3
[(f
195.4435(;81]TJ
/R49 0.24 Tf
1 0 0 -1 24.48 3 25.4435(;)][)Tj
/R24 10.95 Tf
1 0 0 1 247.2 339.1?()Tj
/R24 10.95 Tf
1 0 0 1 270 2874 Tm 3 25.4435(;311]TJ
/R49 0.24 Tf
1 0 0 -1 6 T393 25.4435(;)]j
/R24 10.95 Tf
f
1 0 0 1 2636.48 33339.1 Tm
[(F)-2.69781]TJ
/R11 10.95 Tf
-70.8 -17.2801 Td
[(w)-1.28759(h)-4.10914(e)5.64311(r)4.2 0 T2e)5.64311]TJ
/R61 0.24 Tf
1 0 0 -1 222 321.82 Tm
(f)Tj
/R49 0.24 Tf
5.519 0 T2ef
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Subst
B ` t : A
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Let Val be the natural numbers and let the graph G have two nodes t1; t2 with an edge t1
a!x
7�! t2.

The abstraction µX [
/0]F, where F is (ha!y
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t satB = B

t
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sat . This α
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occur in the situation where the tag set of A j decreases in size passing from formula Fn to Fn+1.

We show that the only way this can happen is if Ai @ A j.

This is slightly tricky to establish. We introduce the idea of a chain with pointers. The pointers

are designed so that each A j in each Fn 2 C points back to some A j0 at Fn0 in C 0 (or to some A j0

in F0). We can define the pointers so that all Ai in F0 point to the smallest sub-formula A j of

F0 such that A j @ Ai, with the sub-formula F0 actually pointing to itself. Subsequently, if Fn has

pointers, then Fn+1 inherits the pointers from Fn and, in the case where Fn is νX [A]F and Fn+1

is F[νX [A+

]F=X ] for some X , we let each occurrence of the newly created sub-formula, νX [A]F

in Fn+1, point to Fn. An invariant of these pointers is that: Ai in Fn points to the formula A j at

Fn0 only if n0 = 0 and A j @ Ai or n0 6= 0 and i = j and the tag set of Ai is greater than that of

A j. We easily establish this invariant by the definition of pointers at F0. To see that the invariant

is maintained along C we choose some Fn for which it holds and consider why Fn+1 � Fn. If

Fn+1 is a sub-formula of Fn then any surviving pointers are inherited and the invariant still holds.

Otherwise Fn+1 is obtained by unfolding, in which case the new pointers satisfy the second part of

the invariant.

Resuming our proof, we suppose the chain has such pointers assigned to it. Then we can now

see that, in order for the tag set of A j to decrease in passing from Fn to Fn+1, the invariant on

pointers tells us that every occurrence of A j in Fn+1 must point to Ai at F0 with Ai @ A j.

This proves that Ai @ A j whenever v
j
n+1 > v

j
n. But topological sorting tells us that i < j, thus

v̄n+1 < v̄n in the lexicographic ordering on vectors because vi
n+1 < vi

n
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(t;F1^F2) � (t;F1) and (t;F1^F2) � (t;F2)

(t;F1_F2) � (t;F1) and (t;F1_F2) � (t;F2)

(t;hτiF) � (t 0;F) for each t
b;τ
7�! t 0

(t; [τ]F) � (t 0;F) for each t
b;τ
7�! t 0

(t;hc!xiF � (t 0;F[e=x]) for each t
b;c!e
7�! t 0

(t; [c!x]F) � (t 0;F[e=x]) for each t
b;c!e
7�! t 0

(t;hc?iG) � ((x)t 0;G) for each t
b;c?x
7�! t 0

(t; [c?]G) � ((x)t 0;G) for each t
b;c?x
7�! t 0

((x)t;8y:F) � (t[w=x];F[w=y]) where w = new( f v((x)t;8y:F))

((x)t;9y:F) � (t[w=x];F[w=y]) where w = new( f v((x)t;8y:F))

(t;A:(ē=z̄)) � (t;A)

(t;νX [A]F) � (t;F[νX [A+

]F=X ]) if t 62 A

where A+

= A [ (t satνX [A]F; t).

Figure 5.7. The generated pairs rewriting relation

such that each Fi is of the form νXi[Ai]F
0

i and no fixpoint formulae are encountered between

each Fi and Fi+1. We define η1 to be [[[t1 satF1]]=X1t1
]. Subsequently we define ηi+1 to be

ηi[[[ti+1 satFi+1]]ηi=Xi+1ti+1
]
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�

Lemma 5.3.3 For finite G and pairs (t;F) generated from (t0;F0) with η as above:

[[t satF ]]η ` t : F:

Proof Similar to the proof in [43] although we use well-founded induction on formulae of gen-

erated pairs. The only cases of interest here are application and fixpoint formulae. If t appears in

the tag set of the fixpoint formula νX [A]F, then rule ν0 and the definition of η gives the result.

Otherwise, by induction we know that

[[t satF [νX [A 0

]F=X ]]]η ` t : F [νX [A 0

]F=X ]

where A 0

= A [ (t satνX [A]F; t). But [[t satF[νX [A 0

]F=X ]]]η is easily seen to be [[t satνX [A]F]]η
so by rule ν1 we have our result.

If F
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Theorem 5.4.1 (Completeness) For all formulae F with empty tag sets, finite G, f v(B)� f v(t),

t j=B F implies B ` t : F:

The remainder of this section is devoted to establishing this. We design a new semantics, called

the symbolic semantics, for the logic to get our completeness result. A symbolic interpretation

takes a recursion environment and a boolean expression, rather than a data environment, in order

to interpret the free data variables. The boolean represents the set of all data environments which

satisfy it. It will be useful to maintain, throughout the completeness proof, a very strict form for

these boolean expressions. We assume that they have the form

B^ (z̄ = ē)

where B is a boolean expression not containing any recursion parameters and ē is a finite vector

of data expressions also not containing any recursion parameters. For notational convenience

we describe such a boolean as follows. Let ε
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[[B0]]sρBbε =

�

G If Bbε j= B0

/0 Otherwise

[[F ^F 0

]]sρBbε = [[F]]sρBbε\ [[F 0

]]sρBbε
[[F _F 0

]]sρBbε =

S

f[[F]]sρB1bε\ [[F 0

]]sρB2bε j Bbε j= B1_B2g

[[hτiF]]sρBbε =

(

t j 9fcigI �Bbε j=
W

I ci;8i:9t
bi;τ
7�! t 0i with ci j= bi

and t 0i 2 [[F]]sρ(B^ci)bε

)

[[[τ]F]]sρBbε =

�

t j 8t
b0

;τ
7�! t 0 implies t 0 2 [[F]]sρ(B^b0)bε

�

[[hc!xiF]]sρBbε =

(

t j 9fcigI:Bbε j=
W

I ci � 8i:9t
bi;c!ei
7�! t 0i with ci j= bi

and t 0i 2 [[F[ei=x]]]sρ(B^ci)bε

)

[[[c!x]F]]sρBbε =

�

t j 8t
b0

;c!e
7�! t 0 implies t 0 2 [[F[e=x]]]sρ(B^b0)bε

�

[[hc?iG]]sρBbε =

(

t j 9fcigI:Bbε j=
W

I0

t
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Case: Fixpoint approximations. We show the case F is µαX :F 0.

Suppose t j=Bbε µαX :θF 0. If α is 0 then H(θF) holds trivially. If α
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ε. t satB = B[ε(z̄)=z̄]

ε. t satF1 ^F2 = ε. t satF1^ε. t satF2

ε. t satF1 _F2 = ε. t satF1_ε. t satF2

ε. t sathτiF =

W

t
b0;τ
7�!t0

b0^ε. t 0 satF

ε. t sat [τ]F =

V

t
b0;τ
7�!t0

b0! ε. t 0 satF

ε. t sathc!xiF =

W

t
b0 ;c!e
7�!t0

b0 ^ε. t 0 satF[e=x]

ε. t sat [c!x]F =

V

t
b0 ;c!e
7�!t0

b0! ε. t 0 satF[e=x]

ε. t sathc?iG =

W

t
b0 ;c?
7�!(x)t0

b0^ε. (x)t 0 satG

ε. t sat [c?]G =

V

t
b0 ;c?
7�!(x)t0

b0! ε. (x)t 0 satG

ε. (y)t sat8x:F = 8w:(ε. t[w=y]satF[w=x]) w = new((y)t;ε;8x:F)

ε. (y)t sat9x:F = 9w:(ε. t[w=y]satF[w=x]) w = new((y)t;ε;9x:F)

ε. t satA:(ē=z̄) = [ε(ē)=z̄]. t satA

ε. t satνX [A]F =

�

bBc if 9(Bbε0; t) 2 A with Bbε0 j=bε
νXtε:(ε. t satF [νX [A+

]F=X ]) otherwise

ε. t satµX [A]F =

�

ff if 9(Bbε0; t) 2 A with Bbε0 j=bε
(ε. t satF [µX [A+µ

]F=X ]) otherwise

where A+

= A [ ((ε. t satνX [A]F)

bε; t) and A+µ
= A [ ((ε. t satµX [A]F)

bε; t).

Figure 5.9. Sat construction for symbolic semantics
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DApps(B) = DApps(X) =
/0

DApps(F1^F2) = DApps(F1
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again by using µ-unfoldings and [τ] rules and a [i?] rule. Now both (5.3) and (5.4) can be reduced to

the single judgement bε0 ` t4 : F3[[
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The soundness of the proof technique UFI, holds principally due to the coinductive definition

of bisimilarity. Consider the two agents

X (= α:X and Y (= α:Y +α:X :

We would happily convince ourselves that X and Y are bisimilar by reasoning similar to the reason-

ing we would use for UFI. We would consider each α-move from Y and match it with a move from

X . For example Y
α
�! Y is matched by X

α
�! X and here, but not before, we assume that X and

Y are bisimilar. Formally we would construct R = f(X ;Y);(X ;X)g as a witnessing bisimulation

and then appeal to the coinduction principle which tells us that R ��.

The UFI rule using a full declaration, fXi (= pigI , is similar in spirit to the previous rule. We

simultaneously establish the hypotheses that

` qi = pi[q̄=X̄]

for terms fqigI and guarded declarations fpigI. From this we infer that q1 = X1.

The purpose of this chapter is to investigate the use of unique fixpoint induction in a value-

passing language in order to characterise bisimulation equivalences over a class of recursively

defined agents. The particular language we consider is value
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where fi � λx̄i:ui and fXi (= λx̄i:tig is a guarded declaration. This rule, naively stated as above,

is unsound. Hennessy and Lin, [42], provide the following example to show this. Let
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where D is a declaration. The declaration given on a sequent is used to identify how to unfold a

recursively defined constant. That is, the unfolding rule

`D tt�X = f
if X (= f 2 D

uses D to determine f , the body of X . This could be achieved without having to carry the name D

around by simply assuming an underlying declaration, D, and referring to this in side-conditions.

However, the declaration is named explicitly on a sequent in order to allow declarations to be

extended mid-proof. For example, suppose a proof we are attempting leads to the subgoal

`D b� t = u

where t and u are both in TD. We conceivably might have to introduce a new agent constant X by

extending D
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EQUIV
`D tt� t = t

`D b� t = u

`D b�u = t

`D b� t = u `D b�u = v

`D b� t = v

AXIOM
t = u 2 Axioms

`D tt� t = u

CONG
`D b� t1 = u1 `D b� t2 = u2

`D b� t1 + t2 = u1+u2

α-CONV
`D tt�c?x:t = c?y:t[y=x]

if y 62 f v(t)

L-INPUT
`D b� t = u

`D b�c?x:t = c?x:u
if x 62 f v(b)

OUTPUT
b j= e = e0 `D b� t = u

`D b�c!e:t = c!e0:u

TAU
`D b� t = u

`D b�τ:t = τ:u

GUARD
`D b^b0� t = u `D b^:b0�nil = u

`D b�b0 ! t = u

CONS
`D b0� t = u

`D b� t = u
if b j= b0

CASE
`D b1� t = u : : : `D bn� t = u

`D

W
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dec-I
`D b� t = u

`D[E b� t = u

dec-E
`D[E b� t = u

`D b� t = u
if t;u 2 TD

FIX
`D tt�X = f

if X (= f 2 D

UFI
8i 2 I `D tt�gi = fi[ḡ=X̄ ]

`D[E tt�g1 = X1

where E = fXi (= figI

is a guarded declaration

λ-I
`D b� f (x̄) = g(x̄)

`D b� f = g
if x̄ 62 f v(b) and xi 6= x j for i 6= j

λ-E
`D b� f = g

`D b� f (ē) = g(ē0)
if b j= ē = ē0

β
`D tt� (λx̄:t)(ē) = t[ē=x̄]

Figure 6.2.
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Proof See [42] �
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Theorem 6.2.4 Let D1 = fXi (= figI and D2 = fYj (= g jgJ
be standard declarations such that

X1(ē1)�
b
L Y1(ē

0

1). Then there exists a standard declaration E = fZi j (= hi jgI�J such that

A `D1[E b�X1(ē1) = Z11(ē1; ¯
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Furthermore, these pairs of terms satisfy the hypothesis of Lemma 6.2.3, so we apply this lemma

to obtain the partition Bi jkl . Now for each b0 2 Bi jkl we define

Ib0

=

n

(p;q) j b0 j= αikp = β jlq and X f (ikp)(ēikp)�
b0

L Yg( jlq)(ē jlq)

o

:

The properties of Bi jkl given by Lemma 6.2.3 ensure that I
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so an application of TAU, OUTPUT, or L-INPUT will give us

`D2[E b0�β jlq:Yg( jlq)(ē jlq) = αikp:Yg( jlq)(ē jlq):

We repeat this for each q and add to obtain (6.8).

The sequent (6.6) is slightly easier to establish using a similar argument owing to the fact that

E is built in favour of D1 and each Ib0

is total. �

Theorem 6.2.5 (Completeness) Let t and u be regular terms with identifiers in D, where D is a

regular, guarded, declaration. Then

t �b
L u implies A `D b� t = u:

Proof We first transform t and u into declarations by using Proposition 6.2.2. This yields decla-

rations, D1 = fXig and D2 = fYjg such that

`D[D1
tt� t = X1(x̄) and `D[D2

tt�u = Y1(ȳ)

where f v(t) = x̄ and f v(u) = ȳ. Moreover, we may assume that D1 and D2 are standard forms and

have disjoint parameters. We know that X1
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� whenever p
α
�! p0 (α 6= c?) then q

α̂
=) q0 for some q0 such that (p0;q0) 2 R

with symmetric conditions for q. We write p�L q if there exists a late weak bisimulation R such

that (p;q)2R . We will drop the subscript L until we discuss the corresponding early equivalence.

Late observation congruence for value-passing CCS, �
=

, is the relation defined by p �
=

q if

� whenever p
c?
�! (x)t then q

c?
=) (y)u for some (y)u such that for each v 2 Val, there is a q0

such that u[v=y]
ε

=) q0 and t[v=x]� q0.

� whenever p
α
�! p0 (α 6= c?) then q

α
=) q0 for some q0 such that p0 � q0

along with the same conditions on q.

Extensive use of symbolic semantics for value-passing CCS will be used for the remainder of

this chapter. Thus we define late weak symbolic bisimulations and late symbolic congruence for

this language.

The symbolic version of the weak transition relation =) is defined as follows:

� t
tt;ε
=) t

� t
b;α
7�! u implies t

b;α
=) u

� t
b;τ
7�!

b0

;α
=) u implies t

b^b0

;α
=) u

� t
b;τ
=)

b0

;τ
7�! u implies t

b^b0

;τ
=) u

� t
b;c!e
=)

b0

;τ
7�! u implies t

b^b0

;c!e
=) u

Suppose S =

�

Sb
	

is a boolean indexed family of relations. Define W SB(S) to be the family

of relations such that

(t;u) 2 W SB(S)b if whenever t
b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a

b^ b1-partition, B, such for each b0 2 B, z 62 f v(b0) and there exists a u
b2;β̂
=) u0 such that b0 j= b2

and

� if α is τ then β� τ and (t 0;u0) 2 Sb0

� if α is c!e then β� c!e0 with b0 j= e = e0 and (t 0;u0) 2 Sb0

� if α is c?x then β� c?y for some y and there exists a b0-partition B0 such that for each b00 2 B0

there is a u00 such that u0[z=y]
b0

2;ε
=) u00 with b00 j= b02 and (t 0[z=x];u00) 2 Sb00

.

We call
�

Sb
	

a late weak symbolic bisimulation if Sb
� W SB(S)b for each b and denote the

largest such S by
�

�

b
	

. Once again we now use the definition of �b to define �
=

b the largest

congruence contained in �b:

t�
=

b u if whenever t
b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u)and a b^b1-partition,

B, such that for each b0 2 B, z 62 f v(b0) and there exists a u
b2;β
=) u0 b
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Lemma 6.4.3 Suppose we have standard, saturated declarations

Xi (= λx̄i: ∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp)

and

Yj (= λȳ j: ∑
l2L j

d jl ! ∑
q2Q jl

β jlq:Xg( jlq)(ē jlq):

Also suppose that Xi(x̄i)�
b^cik^d jl Yj(ȳ j), then tik �

b^cik^d jl u jl where

tik �∑
Pik

αikp:X f (ikp)(ēikp)

and

u jl �∑
Q jl

β jlq:Yg( jlq)(ē jlq):

Moreover there exist disjoint b^cik ^d jl -partitions Bc!
i jkl;B

c?
i jkl and Bτ

i jkl such that

� For each b0 2 Bc!
i jkl and for each p 2 Pik such that αikp � c!e, there exists a q 2 Q jl such that

β jlq � c!e0 with b0 j= e = e0 and X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq).

� For each b0 2 Bτ
i jkl and for each p2 Pik such that αikp� τ, then either X f (ikp)(ēikp)�

b0

Yj(ȳ j)

or there exists a q 2 Q jl such that β jlq � τ with X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq)

� For each b0 2 Bc?
ik jl and for each p 2 Pik such that αikp � c?w, there exists a q 2Q jl such that

β jlq � c?w and there exists a disjoint b0-partition, B0p;b0

such that for each b00 2 B0p;b0

we have

X f (ikp)(ēikp)�
b00

Yg( jlq)(ē jlq) or Yg( jlq)(ē jlq)
d;τ
7�!Yj(b00

)

(ē(b00)) for some j(b00) and ē(b00) with

b00 j= d and X f (ikp)(ēikp)�
b00

Yj(b00

)

(ē(b00))

(Similar conditions for each q 2 Q jl follow by symmetry).

Proof We will write bi jkl as an abbreviation for b^ cik ^ d jl . We know that Xi(x̄i) �
bi jkl Yj(ȳ j)

so, by disjointness of the ciks and d jls we easily see that tik �
bi jkl u jl . Choose some p 2 Pik and

consider the three cases of the form of αikp.

Case αikp is c!e. We know that Xi(x̄i) �
bi jkl Yj(ȳ j) and that Xi(x̄i)

cik;c!e
.76 325l

j)/R24 10.95 Tf
1 0 0 1 384.24 4342 338.2729989]TJ
/R24 6 Tf
10.95 Tf
-1.43984 05.6442729989]TJ
(0)Tj
/R24 8 Tf
1d
[(?)-6]TJ
/R248 Tm
[(()47.44023 Td
[(i)-142.02(j)-22(k)-35f
1 0 0 -1 434.64 286]T 401.98]TJ
/R24 Tm
(2)TTj
/R49 0.24 TJ
/R24 10.99. 401.9(v)-.74 Tm
(95 Tf
73.6801 0 Td
[(X6.93404(s)-53404(i)-6.R24 1301-224.70664(a)(o)-4.109i4]TJ
/R59 )-6.9307(n)t-4.11/R59 )-626161.4(s)-5.5 0.24 Tf
1 0 0 -1 497Td
[(24.46 Tm
(71(l)8.00171]TJ
Tf
4.56016 4.08008 Td9-1.997[(a)-4.100TJ
/R24 10.95 Tf
-1.43984 0926 Tm729989]TJ
(h)-4.10691(a)-4.11137(t)93404(s)477.
[(110.95 Tf
-358.56 -16.0801 2.70227]TJ
/R24 8 Tf
6.47969 -1.6800-3 647.74f)8]TJ
/R165]TJ
/RTm
0.24 Tf
1 0 0 -1 521.28 338.14 Tm
(()T0.24 Tf
6.23984 0 Td
(�)Tj12¯)4.25322(l)-51.9806(q).11026(,)-319.87(b)-42)Tj
/25322(l)-5]TJ
/R24 8 Tf
4.79961 -1.91992 Td
[(i)8(k)-96y0101(p)-10]TJ
/R49 0.2.24 338.14 Tm
())T0.24 Tf
6.23984 0 Td
(�)Tj135.2025322(l)-51.6 Tf
3.6 -1.43984 Td
[(080132404.38(;)Tj
/R57 8 Tf
1 0 0 1 341.28 411.1 T)Tj
 Td44.38(;)T1 8 Tf
3.6 0 Td
[(!)3.0014992 T04.38(;)Tj
44023 Td
[(i)-142.02(j)-22(k)-35.9805(l)7.99867.26 Tm
[(.76 325)-22(l)- Tf
3.6 2.16016 Td
(/R24 -2.60.24 Tf
1 0 0 1 474.48 47j)-22(l)-6]T89.027(a)-4. 408.46 Tm
[(b)-10]TJ
/R1289(S)-4.10914(i)-6.93181(m)-
())T25322(l)-5]T7.99866]TJ
/R61 Tf
7.2 3.84023 Td
(j)6 Td
[(5Tf
1 0 0 0TJ
/R24 10.95 Tf
-1.43984  0 Td
[25322(l)-5]T(s)-5.52048(e)-191.624-4.10914(f477.
[(10c)5.64422(a)5.6442d
[(X)-2.70227]TJ
/R24 8 Tf
6.48008 -1.680082
[(i)7)-142.02(j)-22(k)-35.9805(l)7.9.56 648.14 Tm
(/R24 10.95 Tf
1 0 0 1 384.24 4322d
[(i25322(l)-51 233.52 501.58 Tm
[(e)5.64311]TJ
/R49 0.24 Tf
1 0 0 -1 24992 T25322(l)-5]T)Tj
/R24 10.95 Tf
1 0 0 1 251.76 501.))Tj
25322(l)-511]TJ
/R49 0.24 Tf
1 0 0 -1 260.4T25322(l)-5]T
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Similarly, if fq1; : : :;qmg is the set of all q 2 Q jl such that β jlq is of the form c!e then we let

Ec!
=

(

^

1�i�m

bi j bi 2 Bc!
qi
;1� i� m

)

:

The partition Bc!
i jkl will contain conjunctions of booleans chosen pairwise from Dc! and Ec!. For-

mally, this is

Bc!
i jkl =

�

b^b0 j b 2 Dc!
;b0 2 Ec!

	

:

It is a simple matter to check that Bc!
i jkl is indeed a bi jkl-partition. Moreover, given any b0 2 Bc!

i jkl

and any p 2 Pik such that αikp � c!e, we know that p is represented in b0 by one of the pis. This

means that b0 j= bp for some bp 2 Bc!
p and the required properties of b0 follow easily. We define the

partitions Bτ
i jkl and Bc?

i jkl in an identical manner. For b0 2 Bc?
i jkl and p 2 Pik we know that b0 j= bp for

some bp 2 Bc?
p and that bp is further partitioned into B0p;bp

. We actually need a b0-partition called

B0p;b0

here, but this is obtained simply by defining
n

b00^b0 j b00 2 B0p;
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Part (ii) follows by showing

` bi�∑
i2I

bi ! τ:ui = τ:∑
i2I

bi ! ui

for each i 2 I — the result follows by CASE. This is simple to establish by noticing

` bi�∑ j2I b j ! τ:u j = ∑ j2I bi^b j ! τ:u j

= bi ! τ:ui

= τ:bi ! ui

= τ:∑ j2I bi^b j ! u j

= τ:∑ j2I b j ! u j:

�

Theorem 6.4.5 Let D1 = fXi (= gigI and D2 =

n

Yj (= g0j

o

J
be standard, saturated, strongly

guarded declarations such that X1 does not appear in any gi and Y1 does not appear in any g0j. If

X1(ē1)
�

=

b Y1(ē
0

1) then there exists a standard declaration E = fZi j (= hi jgI
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The last step holds because each p 2 Pik such that αikp is some c!e appears in Ic!
b0

.
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We can use T3 to obtain, for each b0,

` b0�c?w:X f (ikp)(ēikp) = c?w:X f (ikp)(ēikp)+c?w: ∑
b00

2B0

q;b0

b00! Xi(b00

)

(ē(b00))

which, by adding in the rest of tc? and using (6.13), gives us

` b0� tc?
= tc?

+V2[ f̄=Z̄]:

Therefore we have our result because

` b0�V c?
i jkl[ f̄=Z̄] = V1[ f̄=Z̄]+V2[ f̄=Z̄]

= tc?
+V2[ f̄=Z̄]

= tc?

Finally, we show (6.12) by demonstrating

` b0�V τ
i jkl[ f̄=Z̄] = tτ

+ ∑
k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0
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� if α is τ then β� τ and t 0 �b0

u0

� if α is c!e then β� c!e0 with b0 j= e = e0 and t 0 �b0

u0

� if α is c?x then β� c?y for some y and t 0[z=x]�b0

u0[z=y].

(There are of course symmetric conditions on u
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We have the axioms for restriction:

Onc = O

(X +Y )nc = Xnc+Ync

(b! α:
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Given a declaration D =

�

Xi (= λx̄i: ∑
k2Ki

αik:X f (ik)(ēik)

�

I

then we can define the regular dec-

laration Dnc as
(

Zi (= λx̄i: ∑
αik 6=c!;c?

αik:Z f (ik)
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k!0
/.

��

�

i
// Bu f f

r
//

k
// Sum

oo

m
// Split

o
//

*+() k

OO

�

Figure 6.4. Implementation of Spec

(iii) p � Xi(e) and q � C0

i [e=xi]. Suppose that p
α
�! p0 for some p0 so that [[bik[e=xi]]] = tt for

some k 2 Ki with α = αik[e=xi] and p0 � X f (ik)(eik[e=xi]). We know that

q
τ
�!C00

i [e=xi]
τ
�!Ci[e=xi]

α
�! q0

where q0 �C0
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sense, sets of concrete values can be seen as abstract values. The difference in approach lies in

the interpretation of the functions in the data signature. Our approach allows for a kind of precise

interpretation only; interpretation of functions is determined by the abstraction on values. So the

abstract meaning fA, of a function f of arity one, is defined as

fA(V) = f f (v) j v 2 Vg

where V , being an abstract value, is a set of concrete values from Val. Thus we are unable to

reap some of the benefits of general abstraction. For example, if we wish to demonstrate deadlock

freedom of the process p(x), where

p(= λy:c!y:p(y+1)

then the symbolic semantics induces abstract values by considering the concrete values that x

may take. Initially, x
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identifier’s body may become instantiated at a different value after each unfolding. For

example, the process

X (= λx:(X(x+1)+a!x:O);

when instantiated at 0 has an infinitely branching symbolic graph. Guarded recursions al-

ways have finitely branching symbolic graphs so it is clear that X cannot be reduced to a
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