
Towards a Semantic Theory of CML

�

W. Ferreira

M. Hennessy

University of Sussex

February 21, 1995

Abstract

A simple untyped language based on CML, Concurrent ML, is de�ned and analysed. The

language contains a spawn operator for initiating new independent threads of computation and

constructs for the exchange of data between these threads. A denotational model for the language

is presented where denotations correspond to computations of values rather than simply values. It

is shown to be fully abstract with respect to a behavioural preorder based on contextual testing.

1 Introduction

The language Concurrent ML (CML), [18], is one of a number of recent languages which seeks to

combine aspects of functional and concurrent programming. Standard ML, [19], is augmented with the

ability to spawn o� new independent threads of computation. Further constructs are added to enable

these threads to synchronise and exchange data on communication channels. As it includes higher-

order objects, which can be exchanged between threads as data, new channel name generation, and the

ability to form abstractions over communication behaviours using the concept of event types, CML

is a sophisticated language. Although it has been implemented there has been very little work on its

semantic foundations.

There have been a number of attempts at giving an operational semantics, usually in terms of a

reduction relation, to core subsets of the language. For example in [18, 2] the core language �

cv

is given

a two-level operational semantics which results in a reduction relation between multi-sets of language

expressions. We aim to extend this type of work in order to build more abstract semantic theories,

encompassing both behavioural equivalences and denotational models.

As a �rst step in this direction we consider in this paper a relatively simple language which never-

theless contains some of the key features of CML. It is a language for the evaluation of simple untyped

expressions based on the standard construction let x = e

1

in e

2

to which is added a spawn operator for

introducing new threads of computation. To enable these threads to cooperate a range of constructs,

based on those of CCS, for receiving and sending values is also added. The resulting language is more

powerful than the fork calculus, [7], and the language considered in [1] as computation threads have

the ability to exchange data. It is also more powerful than the value-passing process algebra of [9] as

not only can expressions exchange values as data but the evaluation of expressions can terminate in the

production of values. More importantly in [9] the calculation of values is computationally trivial and

does not a�ect the communication behaviour of expressions whereas with our present language both

these are mutually dependent.

In Section 3 we give the syntax of our language and an operational semantics. This is more general

than the corresponding reduction relations of [18, 2], as it also determines the communication potentials

of expressions and their ability to produce values; the operational semantics is given in terms of an

extended labelled transition system. This would enable us to de�ne a notion of bisimulation equivalence

in such a way that the naturalmonadic laws suggested in [14] for the let : : : in : : : construct are satis�ed

and furthermore the spawn operator can be explained in terms of a parallel construct.

A behavioural preorder based on a natural notion of observations is de�ned in Section 5. Expressions

in the language are still designed to evaluate to, or produce values. So the basic observation of an

expression is that it guarantees the production of a value and we then de�ne e

1

<

�

e

2

if every observation

which can be made of e

1

can also be made of e

2

. The remainder of the paper is devoted to building a

fully-abstract denotational model for this preorder. In Section 6 we �rst outline the general structure

which any reasonable denotational model should have, which we call a Natural interpretation. There

are two independent sources for requirements. The �rst, viewing expressions as representing processes,

simply suggests a domain of processes on which the standard processes constructors can be interpreted.

The second, viewing expressions as representing computations of values, suggests a monadic structure

as in [14]. The requirements resulting from the latter view are expressed in terms of a degenerate form

of Kliesli triples.

We then proceed, in Section 7, to construct a particular Natural Interpretation. The starting point

is the value passing version of Acceptance Trees, [8], considered in [9] which is extended to a new model

D to take into account the ability of expressions to produce values. However, as pointed out above, the

key point is the recognition that elements of the model correspond not to values but to computations of

values and in order to obtain a monadic interpretation, [14], it is necessary to consider a retract of D,

called E. This is is shown to be fully-abstract with respect to

<

�

in Section 8 and we end with a brief

comparison with related work.

2 Mathematical Preliminaries

In this section we review the mathematical constructions and notations used in the remainder of the

paper. We recommend the reader to skip this section and to refer to it only when necessary.

We refer to algebraic cpos, [6], in which every non-empty directed set has a least upper bound as

a predomain. If in addition it has a least element it is a domain; equivalently this means that every

directed set has a least upper bound. If D is a predomain then D

?

is the domain obtained by adjoining

a least element and �d 2 D:d

?

denotes the obvious injection.

A function f :D �! E from the predomain D to the predomain E is continuous if it preserves lubs

of directed sets. We use [D �! E] to denote the set of continuous functions. Ordered pointwise it is

also a predomain and even a domain whenever E has a least element, i.e is a domain. If f : [D

n

�! E],

where D and E are predomains we use up(f): [(D

?

)

n

�! E

?

] to denote its obvious strict extension.

More generally for any set X and predomain D the set of functions from X to D, (X �! D), is

also a predomain when ordered pointwise and a domain if D has a least element. For any continuous

function f :D

k

�! D let f

X

: (X �! D)

k

�! (X �! D) be de�ned by f

X

(g)x = f(g

1

(v); : : : ; g

k

(v)).

We use (X *

f

D) to denote the set of partial functions from X to D with a non-empty �nite

domain. This is ordered by

f � g if f(x) �

D

g(x) for every x 2 domain(g),

which makes it into a predomain. Generalising functions from D

k

to D to functions from (X *

f

D)

k

to (X *

f

D) is somewhat more complicated and requires an extra function as parameter; we only

consider the case k = 2. For any h: [D

2

�! D] let h

+

: (X *

f

D)

2

�! (X *

f

D) be de�ned by

h

+

(f; g)x =

8

<

:

h(f(x); g(x)) x 2 domain(f) \ domain(g)

f(x) x 2 domain(f) � domain(g)

g(x) x 2 domain(g) � domain(f):

This function h

+

is not necessarily continuous but we do have:

Lemma 2.1 If h(x; y) � x and h(x; y) � y then

� h

+

is continuous

�

+

itself is continuous when con�ned to such functions. 2

We often denote h

+

(f; g) by f +

h

g.

A convenient method for isolating sub-domains of a given domain is by the use of retracts.

2

De�nition 2.2 A domain retract over a domain D is a a strict continuous function r: [D �! D]

satisfying

1. r � r = r

2. r(k) is compact for every compact k 2 D.

2

If r is a domain retract let kernel(r) denote the set of its �xpoints, kernel(r) = f d 2 D j r(d) = d g.

This also coincides with the image of r.

Proposition 2.3 If r is a domain retract then kernel(r) is a domain. 2

Finally we recall some notation on acceptance sets , [8]. If A is a non-empty �nite collection of �nite

subsets of a set X it is called an acceptance set (over X) if it satis�es

1. A;B 2 A implies A [B 2 A

2. A;B 2 A and A � C � B implies C 2 A.

We use j A j to denote the basis of the acceptance set A, i.e. [fA j A 2 Ag and A(X) to denote the

set of all acceptance sets over X; ordered by reverse subset inclusion it is a predomain. We use three

binary operators over A(X). For A;B 2 A(X) let

1. A ^ B be c(A [B) where c(C) is the smallest acceptance set containing the non-empty collection

of �nite subsets C

2. A _ B be the acceptance set de�ned by fA [B j A 2 A; B 2 B g

3. A

p

B, where

p

is a distinguished element of X, be c(C [B) where C = fA j A 2 A;

p

62

A g [f (A� f

p

g) [B j A 2 A;

p

2 A; B 2 B g.

These three operators are continuous over the predomain consisting of A(X) ordered by reverse set

inclusion.

3 The Language and its Operational Semantics

In this paper we consider a very simpli�ed version of CML. It is based on a sequential language for

evaluating expressions over some datatype, such as the Natural Numbers, whose main syntactic construct

is the construction let x = e

1

in e

2

Thus all notions of types are ignored and higher-order constructs are

not considered. Nevertheless our language will incorporate some of the non-trivial features of CML .

Parallelism can be introduced into a sequential language for evaluating expressions by adding a new

operator called spawn which can initiate a new computational thread.

� n?�x:e, input a value along the communication channel n and apply the function �x:e to it

� n!v:e

2

, output the value v along the channel n and then evaluate e

2

,

and an untyped choice operator e

1

+e

2

, meaning carry out the evaluation associated with the expression

e

1

or that associated with e

2

.

In addition to these operators which have their direct counterparts in CML we add a parallel operator

e

1

j e

2

, meaning carry out the evaluation of e

1

and e

2

concurrently. Such an operator does not appear

in the syntax of CML but it enables us to express directly in the syntax of the language the states which

are generated as the evaluation of an expression proceeds.

The complete abstract syntax of our language is given by the following:

e ::= d j op(d) j let x = e in e j b 7! e; e j spawn(e)

j n?�x:e j n!d:e j e + e j e j e

j local n in e end j � j e� e j let rec P in e j P

d := v j x

The constructs not explained are

� local n in e end { meaning that n is a local channel name for the evaluation of e,

� � { an evaluation which can no longer proceed,

� e

1

� e

2

{ an internal or spontaneous choice between the evaluation of e

1

and e

2

� let rec P in e { recursive de�nitions using a set of prede�ned expression names P 2 PN.

The two constructs e

1

� e

2

and � are not essential as they can be de�ned using the other operators but

they have proved to be convenient in the development of process algebras,[10, 8]. On the other hand

local n in e end does have a counterpart in CML although in our language we only have a prede�ned set

of channel names N , over which n ranges, as opposed to the channel name generation facility of CML.

Finally the facility for recursive de�nitions is modelled on that used in process algebras as recursion in

CML is achieved using functional types.

We use PExp to denote the set of expressions generated by this abstract syntax and CPExp to denote

the set of closed expressions; the standard de�nitions of free and bound occurrences of variables and

process names apply and an expression is closed if it contains no free occurrence of a variable or a

process name.

We now consider an operational semantics for CPExp. For the sake of simplicity we ignore the

evaluation of boolean expressions. That is we assume that for each closed boolean expression b there is

a corresponding truth value [[b]] and more generally for any boolean expression b and mapping � from

variables to values there is a boolean value [[b]]�. We also assume that for each operator symbol op 2 Op

we have an associated function [[op]] over the set of values Val of the appropriate arity. The operational

semantics for CML, in papers such as [7, 18, 2], are given in terms of a reduction relation between

multisets of closed expressions, but because we have introduced the parallel operator j our reduction

relation is expressed simply as a binary relation

�

�! over closed expressions; e

�

�! e

0

means that in one

step the closed expression e can be reduced to e

0

. Also these papers use a two-level approach to the

operational semantics, the lower-level expressing reductions of individual expressions and the upper-

level using these lower-level relations to de�ne reductions between multisets of expressions. Instead, as

is common for process algebras, we use auxiliary relations

n?v

�! and

n!v

�! to de�ne our reduction relation

�

�!.

There is one further ingredient. A sequence of reductions should eventually lead to the production

(V T) v

p

v

�! �; op(v)

p

w

�! � where [[op]](v) = w

(PT)

e

2

p

v

�! e

0

2

e

1

j e

2

p

v

�! e

1

j e

0

2

(BT)

e

p

v

�! e

0

; [[b]] = true

b 7! e

p

v

�! e

0

(LT)

e

p

v

�! e

0

local n in e end

p

v

�! local n in e

0

end

Figure 1: Operational semantics: value production rules

e

1

�

�! e

0

1

implies let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

e

1

p

�! v implies let x = e

1

in e

2

�

�! e

2

[v=x]

could adequately describe the semantics of local declarations of variables.

However the correct handling of the spawn construct requires some care. This is best discussed in

terms of a degenerate form of local declarations; let e

1

; e

2

be a shorthand notation for let x = e

1

in e

2

where x does not occur free in e

2

. We could therefore derive from above the natural rules:

e

1

�

�! e

0

1

implies e

1

; e

2

�

�! e

0

1

; e

2

e

1

p

�! v implies e

1

; e

2

�

�! e

2

.

Intuitively spawn(e

1

); e

2

should proceed by creating a new processor to handle the evaluation of e

1

which could proceed at the same time as the evaluation of e

2

. However this requires a reinterpretation

of the sequential composition operator ; as in [1]; e

1

; e

2

no longer means when the evaluation of e

1

is

�nished start with the evaluation of e

2

. Instead we interpret e

1

; e

2

as \start the evaluation of e

2

as soon

as an initialisation signal has been received from e

1

". This initialisation signal is of course a

p

-move

and the above judgement can be inferred if we allow the inferences

spawn(e)

p

�! e

e

1

p

�! e

0

1

implies e

1

; e

2

�

�! e

0

1

j e

2

.

In the second rule e

2

is initiated and its evaluation runs in parallel with that of the continuation, e

0

1

, of

e

1

.

This discussion indicates a potential conict between the two uses of the predicate

p

, one to produce

values and the other to produce continuations. However this conict can be resolved if we revise

p

so

that it has the type

p

�! � CPExp � (Val�CPExp):

When applied to a term it produces both a value and a continuation, for which we use the notation

e

p

v

�! e

0

. The revised rule for simple values now becomes

v

p

v

�! �

where � is the \deadlocked evaluation " .

Local declarations are now interpreted as follows:

e

1

�

�! e

0

1

implies let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

e

1

p

v

�! e

0

1

implies let x = e

1use

(LtI)

e

1

p

v

�! e

0

1

let x = e

1

in e

2

�

�! e

0

1

j e

2

[v=x]

(SI) spawn(e)

�

�! e

0

j null

(ECI)

e

1

p

v

�! e

0

1

e

1

+ e

2

�

�! e

0

1

j v

e

2

p

v

�! e

0

2

e

1

+ e

2

�

�! e

0

2

j v

(Com)

e

1

n?v

�! e

0

1

; e

2

n!v

�! e

0

2

e

1

j e

2

�

�! e

0

1

j e

0

2

e

1

n!v

�! e

0

1

; e

2

n?v

�! e

0

2

e

1

j e

2

�

�! e

0

1

j e

0

2

(IC) e

1

� e

2

�

�! e

1

e

1

� e

2

�

�! e

2

(Rec) let rec P in e

�

�! e[let rec P in e=x]

(ECA1)

e

1

�

�! e

0

1

e

1

+ e

2

�

�! e

0

1

+ e

2

e

2

�

�! e

0

2

e

1

+ e

2

�

�! e

1

+ e

0

2

Figure 2: Operational semantics: main reduction rules

Using these rules one can check that the evaluation of spawn(e

1

); e

2

can proceed by initiating a thread

for the evaluation of e

1

and then at any time launch a new thread which evaluates e

2

.

The de�ning rules for the operational semantics are given in Figures 1,2,3. The �rst contains the

rules for the relations

p

v

�! while the second contains the most important rules for the reduction relation

�

�!. The �nal Figure contains the rules for the external actions

n?v

�!;

n!v

�! and routine rules for the

reduction relation

�

�!. Here � ranges over the set of actions Act

�

which denotes Act [f�g, where Act

denotes the set of external actions fn?v j n 2 N; v 2 Val g [fn!v j n 2 N; v 2 Valg.

Most of these rules have either already been explained or are readily understood. However it is worth

pointing out the asymmetry in the termination rule for parallel, (PT). In the expression e j e

0

only e

0

can

produce a value using a

p

action. Of course e can evaluate independently and indirectly contribute to

this production by communicating with e

0

using the rule (Com). Also the rule for external choice (ECI)

might be unexpected. It implies, for example, that if e

1

can produce a value v with a continuation e

0

1

then the external choice e

1

+ e

2

can evolve to a state where the value v is available to the environment

while the evaluation of continuation e

0

1

proceeds. Both these rules are designed to reect the evaluation

of CML programs as explained in [18].

4 Value Production Systems

The operational semantics ofPExp determines a labelled transition system with a number of special prop-

erties. These are encapsulated in our de�nition of a value production system. First in the present circum-

stances it is reasonable to de�ne a labelled-value-transition system as a collection hE;Val;Act

�

;�!;

p

�!i

where

� E is a set of (closed) expressions

� Val is a set of values such that Val � E

� �!� E � Act

�

� E

�

p

�!� E � Val� E.

(ECA2)

e

1

a

�! e

0

1

e

1

+ e

2

a

�! e

0

1

e

2

a

�! e

0

2

e

1

+ e

2

a

�! e

0

2

(PA)

e

1

�

�! e

0

1

e

1

j e

2

�

�! e

0

1

j e

2

e

2

�

�! e

0

2

e

1

j e

2

�

�! e

1

j e

0

2

(BoolA)

e

1

�

�! e

0

1

; [[b]] = true

b 7! e

1

; e

2

�

�! e

0

1

e

2

�

�! e

0

2

; [[b]] = false

b 7! e

1

; e

2

�

�! e

0

2

(LcA)

e

�

�! e

0

; chan(�) 6= n

local n in e end

�

�! local n in e

0

end

(LtA)

e

1

�

�! e

0

1

let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

(SA)

e

2

(

7. backward commutativity: If e

p

v

�! e

1

and e

1

�

�! e

2

then there exists e

3

such that

e

p

v

-

e

1

e

3

�

?

p

v

-

e

2

�

?

2

Theorem 4.2 The operational semantics of the previous section determines a vps with PExp as the set

of expressions.

Proof: The �rst three conditions are straightforward and the four others can be proved by rule

induction on the operational semantics. As an example we outline the proof of backward commutativity.

So suppose e

p

v

�! e

1

and e

1

�

�! e

2

. The proof is by induction on the derivation of the transition e

p

v

�! e

1

and their are four cases, (VT), (PT), (BT) and (LT). As an example consider the second, (PT), when

e = f

1

jf

2

; e

1

= f

1

jf

0

2

and f

2

p

v

�! f

0

2

. There are three possibilities for the derivation e

1

�

�! e

2

.

Case f

0

2

�

�! f

00

2

and e

2

is f

1

j f

00

2

: Since f

2

p

v

�! f

0

2

then by induction there exists f

000

2

such that f

2

�

�!

f

000

2

p

v

�! f

00

2

which implies f

1

jf

2

�

�! f

1

jf

000

2

p

v

�! f

1

jf

00

2

.

De�nition 4.4 A symmetric relation R � E�E is called a strong bisimulation if it satis�es: he; e

0

i 2 R

implies that

1. e

�

�! e

1

implies e

0

�

�! e

0

1

for some e

0

1

such that he

1

; e

0

1

i 2 R

2. e

p

v

�! e

1

implies e

0

p

v

�! e

0

1

for some e

0

1

such that he

1

; e

0

1

i 2 R.

Let e � e

0

if he; e

0

i 2 R for some strong bisimulation R. 2

Theorem 4.5 In any vps if e

p

v

�! e

0

then e � e

0

j v.

Proof: Let

R = f he; e

0

j vi j e

p

v

�! e

0

g [f he; (e j �)i j e 2 P

E

g:

Using forward commutativity, value-determinacy and single-valuedness one can show that R is a strong

bisimulation. 2

This theorem demonstrates that values can only be produced by expressions in PExp in a very

restricted manner. Essentially values can only be o�ered to the environment and subsequent behaviour

can not depend on the value being absorbed by the environment. An immediate corollary of this is that

the production of a value can not lead to an expression diverging; we say e diverges, written e * if there

is an in�nite sequence of derivations

e

�

�! e

1

�

�! e

2

�

�! : : : : : :

�

�! e

k

�

�! : : : : : :

Corollary 4.6 If e

p

v

�! e

0

and e

0

* then e *. 2

We now turn our attention to the properties of the let construct. At the abstract level of value

production systems this is best studied by assuming there is a set of functions F from Val to E with

the property that for each e 2 E there is an element let x = e in f(x) whose actions are determined by

the appropriate versions of the rules (LtI) and (LtA):

e

p

v

�! e

0

let x = e in f(x)

�

�! e

0

j f(v)

e

�

�! e

0

let x = e in f(x)

�

�! let x = e

0

in f(x)

In the case of the vps for the language PExp the set F consists of all functions �v 2 Val:e[v=x] where e

ranges over expressions in PExp which have at most x as a free variable.

One can easily show that in the abstract setting of a vps that the let construct satis�es properties

such as

let x = e

1

j e

2

in f(x) � e

1

j let x = e

2

in f(x):

But unfortunately to obtain more interesting properties we have to work with respect to a slightly

weaker equivalence than strong bisimulation.

De�nition 4.7 A symmetric relation R � E �E is called a mild bisimulation if it satis�es: he; e

0

i 2 R

implies that

1. for every a 2 Act e

a

�! e

1

implies he

1

; e

0

1

i 2 R for some e

0

1

such that e

0

a

�! e

0

1

or e

0

�

�!

a

�! e

0

1

2. e

p

v

�! e

1

implies he

1

; e

0

1

i 2 R for some e

0

1

such that either e

0

p

v

�! e

0

1

or e

0

�

�!

p

v

�! e

0

1

3. e

�

�! e

1

implies either he

1

; e

0

1

i 2 R for some e

0

1

such that e

0

�

�! e

0

1

or e

1

� e

0

.

Let e �

m

e

0

if he; e

0

i 2 R for some mild bisimulation R. 2

Theorem 4.8 In any vps

1. let x = e in Id(x) �

m

e where Id is the identity function

2. let x = v in f(x) �

m

f(v) for every value v

9

For our language a reasonable notion of observation is the production of values but in view of the

inherent nondeterminism of the language there are are least two reasonable adaptions, based loosely on

the may and must testing of [8]. We concentrate on the latter which informally can be viewed as being

based on the ability of expressions to guarantee the production of values.

A computation of a closed expression e is any maximal sequence (i.e. it is �nite and cannot be

extended or it is in�nite) of � derivations from e. Let Comp(e) be the set of computations of e. For any

c 2 Comp(e) let c

i

denote the ith component of c. Then for any v 2 V al we say that e must v if for all

c 2 Comp(e) there exists some i such that c

i

p

v

�!.

De�nition 5.1

For closed terms e

1

; e

2

2 CPExp let e

1

<

�

e

2

if for all contexts C[]; C[e

1

] must w impliesC[e

2

] must w

where w is a new distinguished value. 2

Although this preorder looks quite similar to themust testing of [8, 9] there is an important di�erence.

In those papers a process term e is tested by running it in parallel with a testing process T . Thus the

only testing contexts allowed were of the form [] j T which makes the analysis of the preorder more

tractable. Here the testing contexts can be constructed using any of the operators of the language,

although, for simplicity, the use of recursion in the contexts is not allowed. This change brings the

preorder more in line with the original idea of contextual preorders, as suggested by Morris, [15] but

the requirement that the value being guaranteed, w, being new is important. For example without this

we would have

 j v

6<

�

just by taking the empty context. Since according to the above de�nition
 j v must v and obviously

must6 v. However these two terms are identi�ed in the model presented later. The present formulation

leads to a more tractable semantic theory but we hope to examine natural variations in future work.

Contextual preorders are not very easy to work with and

<

�

is no exception. Accordingly we de�ne an

alternative characterisation which is more amenable to investigation. This alternative characterisation

is quite similar to that used in [9] but there are important di�erences. Moreover the characterisation

theorem is considerably more di�cult to prove in view of the use of arbitrary contexts as tests. First

some notation. Recall that Act

�

denotes the set of actions Act[f�g. This style of notation is extended

by letting Act

V al

�

denote the set of actions Act together with � and

p

v for every value v, and Act

V al

this

set minus � . Recall from Lemma 4.3 that in a given computation expressions can only produce at most

one value. So the set of sequences of actions a process can perform is a subset of S = Act

�

[f s

1

p

vs

2

j

v 2 V al; s

1

; s

�s

C

rej

[:](s; �) = let x = [:] in b!x:� j rej(s; �) for fresh b; x

where rej(s; a) is de�ned as

rej("; a?v) = a!v:� + w

rej("; a!v) = a?x:(x = v 7! �; w) +w

rej(";

p

v) = b?x:(x = v 7! �; w) +w

rej(a?v:s; �) = a!v:rej(s; �) +w

rej(a!v:s; �) = a?x:(x = v 7! rej(s; �); w) +w

rej(

p

v:s; �) = b?x:(x = v 7! rej(s; �); w) +w:

The second tests for the presence of acceptance sets of a certain form. Let R = fa

1

� � �a

k

g be a �nite

subset of Act [f

p

g and s a sequence from S. Then de�ne C

acc

[:](s;R) by

C

acc

[:](s;R) = let x = [:] in b!x:� j acc(s;R) for fresh b; x

where acc(s;R) is de�ned as

acc(";R) = acc(R)

acc(a?v:s;R) = a!v:acc(s;R) +w

acc(a!v:s;R) = a?x:(x = v 7! acc(s;R); w) +w

acc(

p

v:s;R) = b?x:

Given such an interpretation a denotational semantics for the language can be given as a function

D[[]] : PExp �! [Env

V al

�! [Env

D

�! D]];

where Env

Val

denotes the set of Val environments, i.e. mappings from the set of variables Var to the

set of values Val and Env

D

is the set of D environments, mappings from the set of process names PN

to the domain D. This is de�ned by structural induction on expressions:

i) D[[x]]�� = �(�(x))

ii) D[[v]]�� = �(v)

iii) D[[op(d)]]�� = �([[op]](�(d)))

iv) D[[f(e)]]�� = f

D

(D[[e]]��) for each f 2 �

v) D[[let rec P in e]]�� = Y ��:D[[e]]��[�=P]

vi) D[[b 7! e

1

; e

2

]]�� = D[[e

1

]]�� if [[be]]�� = T

D[[e

2

]]�� if [[be]]�� = F

vii) D[[n?x:e]]�� = in

D

n �v:D[[e]]�[v=x]�

viiii) D[[let x = e

1

in e

2

]]� = (�v:D[[e

2

]]�[v=x])

�

D

[[e

1

]]�

ix) D[[spawn(e)]]� = [[e]]� j

D

null

where Y is the least-�xpoint operator for continuous functions over D.

One can check that this this semantic function satis�es the standard \substitution lemma":

Lemma 6.2 D[[e]]�[v=x] = D[[e[v=x]]]�. 2

However there are some reasonable requirements on the interpretation of the let construct which

are best expressed as properties of the functions � and

�

D

; these are derived directly from the monad

laws given in [14].

De�nition 6.3 An Interpretation is Natural if

1. (�

D

)

�

D

= id

D

2. f

�

D

� �

D

= f for every f :Val �! D

3. f

�

D

� g

�

D

= (f � g

�

D

)

�

D

for every f; g:Val �! D.

2

These properties ensure that the interpretation of the let construct has some expected properties:

Proposition 6.4 If D is a Natural Interpretation then

1. D[[let x = e in x]] = D[[e]]

2. D[[let x = v in e]] = D[[e[v=x]]]

3. D[[let x

2

= (let x

1

= e

1

in e

2

) in e

3

]] = D[[let x

1

= e

1

in (let x

2

= e

2

in e

3

)]] provided x

1

62 fv(e

3

).

Proof: Each of these is a direct consequence of the corresponding constraint on Natural Interpretations,

given in the previous de�nition. As an example we outline the proof of the second property and for

15

convenience we abbreviate D[[]] to [[]].

[[let x = v in e]]� = (�v:[[e]]�[v=x])

�

D

[[v]]

= (�v:[[e]]�[v=x])

�

D

�

D

(v)

= ((�v:[[e]]�[v=x])

�

D

� �

D

)(v)

= (�v:[[e]]�[v=x])(v) from condition 2 in De�nition 6.3

= [[e[v=x]]]� from the previous Lemma.

2

The aim of this paper is to provide a Natural Interpretation which is fully-abstract with respect to

the behavioural preorder

<

�

, i.e. which satis�es

D[[e

1

]] � D[[e

2

]] if and only if e

1

<

�

e

2

for all expressions e

1

; e

2

.

7 Acceptance Trees

Here we �rst review the version of Acceptance Trees, [8], used

number of di�erent values on any given channel and therefore the set of �nite non-empty functions from

values to processes is used for output sequels. Note that O is a predomain rather than a domain.

In addition to the input and output of values expressions from PExp can produce values, i.e. perform

p

actions. Therefore to model PExp

Most of the operators in PExp have been interpreted over the domainP and they are easily modi�ed

to D. For example constant � is interpreted as foldhf;g; ;i and the input operator

in

D

:Chan �! [Val �!D] �!D

is de�ned by

in

D

n f = fold hffn?gg; n? 7!

Lemma 7.2 TR is continuous. 2

Therefore for any function k from [H

p

�!D]

�X:TR k X : [[D �! D] �! [H

D

�! H

D

]]

and

fold � (�X:up(TR k X)) � unfold: [[D �! D] �! [D �! D]]:

So we can de�ne tr k to be Y (�X:TR k X).

We now look at the application of tr to a particular class of functions generated by those in

(Val �!D). For such an f let f

v

:H

p

�!D be de�ned by

f

v

hA; gi =

X

� f g

p

(v) j

D

f(v) j v 2 domain(g

p

) g:

where here

P

� represents the repeated application of �

D

to a �nite non-empty set of elements of D.

De�nition 7.3 For any f :Val �! D let f

�

D

denote tr f

v

. 2

We have now shown how to interpret each of the constructs fromPExp in the domainD and therefore

we have an Interpretation for PExp. Unfortunately it is not a Natural Interpretation as the requirement

�

�

D

D

= id

D

is not satis�ed. The problem occurs because there are many compact elements in the domainD which

are not denotable under this interpretation by expressions in PExp. A typical example is any d element

of the form hfn!;

p

g; fi

?

where f(

p

) = �

D

. One can check that �

�

D

D

d has the form fold hA; gi

?

where

f

p

g 2 A and therefore this must be di�erent from d. However we can use a domain retract to cut down

the model D so as to get a Natural Interpretation.

We have seen in Section 4 that the operational behaviour of expressions is constrained in that the

properties of Value Production Systems are satis�ed. To de�ne a Natural Interpretation we need to

isolate a subdomain of D which satis�es the semantic counterparts to these properties. To do so we use

the function �

�

D

D

.

Proposition 7.4

1. �

�

D

D

(d�

D

d

0

) = �

�

D

D

(d)�

D

�

�

D

D

(d

0

)

2. �

�

D

D

is a domain retract. 2

Proof: The proofs are straightforward but tedious and outlines may be found in [4]. 2

Let E denote the kernel of �

�

D

D

which we know from Section 2 is a domain. This can be viewed as

an Interpretation by using the functions already de�ned over D. Speci�cally

1. for each symbol f 2 � let f

E

be de�ned as �

�

D

D

� (f

D

)d

E

,

2. the input function is de�ned as before, in

E

n f = fold hffn?gg; n? 7! fi

?

3. �

E

= �

D

d

E

4. for f 2 [Val �! E] let f

�

E

= (f

�

D

)d

E

.

With these de�nitions we have:

Proposition 7.5 E is a Natural Interpretation. 2

The main result of the paper is:

Theorem 7.6 The Natural Interpretation based on E is fully-abstract, i.e. for all expressions e; e

0

2

CPExp; E[[e]] � E[[e

0

]] if and only if e

<

�

e

0

.

The next section of the paper is devoted entirely to the proof of this theorem.

19

8 Relating Behavioural and Denotational Interpretations

In this section we outline the proof of full-abstraction:

For all closed expressions e

1

; e

2

; e

1

<

�

e

2

if and only if E[[e

1

]] � E[[e

2

]].

We have already shown in Section 5 how

<

�

can be represented by the alternative characterisation �.

In fact we can reformulate the ordering on elements of D in much the same way. This new ordering,

also denoted by �, is internally fully-abstract with respect to � on D.

The de�nition of� is a slight modi�cation of the de�nition given in [9] for V PL. For each � 2 Act

V al

we de�ne an in�x partial function

�

�! by

T

�

�! T

0

if i) � is a!v; unfold(T) = hA; fi and T

0

is f(c!)(v)

or ii) � is a?v; unfold(T) = hA; fi and T

0

is f(c?)(v)

or iii) � is

p

v; unfold(T) = hA; fi and T

0

is f(

p

)(v)

Secondly we can de�ne A(T; s) the acceptance sets of T after s as

1. A(T; ") =

�

A if unfold(T) = hA; fi

; otherwise.

2. A(T; �s) =

�

A(T

0

; s) if T

�

�! T

0

; otherwise

Finally let + s for s 2 S be the least relation on trees satisfying the following rules.

1. T + " if T 6= ?

2. T + �s if T + " and T

�

�! T

0

implies T

0

+ s.

With these constructs we are ready to de�ne the alternative characterisation.

De�nition 8.1 For T; U , let T � U if for every s 2 S; T + s implies

1. U + s

2. A(U; s) � A(T; s).

2

Theorem 8.2 (Internal Full-Abstraction) In D; T � U if and only if T � U .

Proof: We refer the reader to the proof of Theorem 3:5:3 in [11], page 107, which is virtually identical.

2

Recall that E is sub-domain of D and therefore it is su�cient to show that for closed terms

e

1

� e

2

if and only if E[[e

1

]] � E[[e

2

]]: (2)

To establish this it is su�cient to prove the two statements:

e + s if and only if [[e]] + s: (3)

and

e + s implies A([[e]]; s) = c(A(e; s)): (4)

The proof of these two require the use of head normal forms, or hnfs, and it is here that the proof diverges

from that of the corresponding result in [9]; here we use head normal forms which are considerably more

20

complex. So we �rst de�ne the required notion of hnf , show that convergent terms can always be

transformed in one, and then show how they can be used in the proof of the two statements above.

Because of the complexity of hnfs we need to introduce some notation before they can be de�ned. For

the remainder of this section we use Pre to denote the set of pre�xes, i.e. objects of the form c!d or

c?

e v e

e v e

0

; e

0

v e

00

e v e

00

e

i

v e

0

i

f(e) v f(e

0

)

for each f 2 �

0

c!v:e = c!v:e

c?x:e = c?y:(e[y=x])

y =2 fv(e)

e v e

0

e� v e

0

�

for every equation e v e

0

let rec PM5e9.3(P)]10398 0 Td
(=)Tj
/R172 0.24 Tf
10.5602 0 Td
(e)Tj
/R121 0.24 Tf
4.56016 0 Td
([)Tj
/R172 0.24 Tf
2.88008 0 Tm
[(l)-999.654(et)-13699.7ec P

Testing equations:

X � (Y � Z) = (X � Y)� Z (�1)

X � Y = Y �X (�2)

X �X = X (�3)

X � Y v X (S)

X + (Y + Z) = (X + Y) + Z (+1)

X + Y = Y +X (+2)

X +X = X (+3)

X + � = X (+4)

local n in X + Y end = local n in X end+ local n in Y end (+5)

local n in �:X end =

�

�:local n in X end; if n not in �

�; otherwise

X � Y v X + Y (+ � 1)

�:X + �:Y = �:(X � Y) where � 2 Pre (+ � 2)

c?�x:X + c?�x:Y = c?�x:X � c?�x:Y (+ � 3)

c!d:X + c!d

0

:Y = c!d:X � c!d

0

:Y (+ � 4)

X � (Y + Z) = (X � Y) + (X � Z) (+ � 6)

Structural equations:

local n in X � Y end = local n in X end� local n in Y end

let x = X � Y in Z = let x = X in Z � let x = Y in Z

(X � Y) j Z = (X j Z) � (Y j Z)

X j (Y � Z) = (X j Z) � (Y j Z)

X + (Y � Z) = (X + Y) � (X + Z)

Figure 5: Standard Equations

Many of the operators on E behave the same as their counterparts on D when restricted to elements

of E. For example if e

1

; e

2

are elements of E then e

1

�

D

e

2

= e

1

�

E

e

2

. This is a simple consequence

of the de�nition of �

E

and Proposition 7.4. The same is true for the input and output operators which

have the same de�nition for both D and E. This property is not true for +

E

or j

E

because of the

preemptive nature of value production in these contexts. However we do have the following results:

E[[

X

f e

a

j a 2 A g]] =

X

D

fE[[e

a

]] j a 2 A g where

p

=2 A

and

E[[e j v]] = E[[e]] j

D

E[[v]]:

It is also not di�cult to show:

Proposition 8.8 Suppose e is a term in sum-form, and e

p

is a term in value-standard form, then

E[[e+ e

p

]] = (E[[e]] +

D

E[[e

p

]])�

D

E[[e

p

]]:

2

We are now ready to prove the two required results above, (3) and (4). As a �rst step towards the

proof of the �rst we have:

Lemma 8.9 For every closed expression e, e + if and only if E[[e]] +.

23

Let equations:

Suppose X =

P

i2I

�

i

:X

i

and x 62 fv(�

i

),

let x = X in Y =

P

i2I

�

i

:(let x = X

i

in Y)

Suppose X =

P

i2I

�

i

:X

2

By composing all of the results in this section we obtain a proof of Theorem 7.6:

Theorem 8.13 The model E is fully-abstract with respect to the testing preorder

<

�

, i.e. for all closed

expressions e

<

�

e

0

if and only if E[[e]] � E[[e

0

]]. 2

9 Related Work

There has already been a number of attempts at giving an operational semantics for CML , or rather

core subsets of CML but as far as we are aware very few of these have been used to develop a semantic

theory or denotational model for the language. For example in [18, 2] the core language �

cv

is given

a two-level operational semantics which results in a reduction relation between multisets of language

expressions. Although this gives a formal semantics which may be referenced by implementors it is

insu�cient as the basis of a behavioural theory. A similar approach is taken in [7] where a hierarchy

of languages is de�ned and each is given a bisimulation semantics. Starting with a CCS like language

in which the parallel operator has been replaced with a fork operator for process creation, restriction,

guarded choice and �nally private channel names are added. This last re�nement produces a language

which is more reminiscent of the � � calculus and in particular it does not include any notion of the

production of values.

More recently in [3] an operational semantics is given to a language called FPI which has many of the

programming constructs of CML. However it lacks any spawn or fork construct and indeed later in the

same thesis the author notes that in order to accommodate such an operator the operational semantics

would have to be modi�ed considerably. Furthermore the operational semantics of value production

within the context of the parallel operator in not consistent with that of CML in [18]. In the same

We can give an operational semantics to contexts using the notion of action transducer as de�ned

in [12]. Transitions are of the form C

�

�!

�

C

0

, where � 2 Act

V al

�

and � 2 Act

�

, and intuitively this

can be interpreted as: whenever e

�

�! e

0

then C[e]

�

�! C

0

[e

0

]. However sometimes in a move of an

expression of the form C[e] there are no contributions from e and therefore in addition we have moves

of the form C

�

�!

�

C

0

to indicate that C[e]

�

�! C[e] for any expression e.

The rules de�ning these transitions are given in Figure 1, where � ranges over Act

�

; � over Act

V al

�

and over Act

V al

�

[f�g; for convenience some obvious symmetric rules for + have been omitted.

We �rst state some elementary properties of these transitions. Let C[] #

[]

denote that [] occurs

beneath some pre�x in C and C[] "

[]

the converse.

Lemma A.1

1. If C[]

�

�!

�

C

0

[] then � = �; C

0

[] is C[] and C[] "

[]

2. If C[]

�

�!

�

0

C

0

[] then C[] "

[]

and C

0

[] "

[]

.

3. C "

[]

and e

�

�! e

0

implies C[e]

�

�! C[e

0

]

Proof: The �rst two statements are proved by rule induction while the last is by induction on the

structure of C[]. 2

We now show that these transitions are consistent with the operational semantics for expressions

given in Section 3. This consists in the ability to decompose a move from an expression of the form C[e]

into a transition from the context C[] and an associated move from e

[]

�

�!

�

[]

e

�

�! e

0

e

�

�!

�

e

0

C[]

p

v

�!

C

0

[]

e j C[]

p

v

�!

e j C

0

[]

C[]

p

v

�!

�

C

0

[]

let x = C[] in e

�

�!

�

C

0

[] j e

C[]

�

�!

C

0

[]

let x = C[] in e

�

�!

let x = C

0

[] in e

C[]

�

�!

�

C

0

[]

spawn(C[])

�

�!

�

spawn(C

0

[])

spawn(C[])

�

�!

�

C[] j null

e

p

v

�! e

0

e +C[]

p

v

�!

�

e

0

C[]

p

v

�!

�

C

0

[]

e +C[]

p

v

�!

C

0

[]

C[]

�

�!

�

C

0

[]

C[] + e

�

�!

�

C

0

[] + e

e

�

�! e

0

C[] + e

�

�!

�

C[] + e

0

C[]� e

�

�!

�

C[] C[]� e

�

�!

�

e

n?�x:C[]

n?v

�!

�

C[][v=x] n!v:C[]

n!v

�!

�

C[]

C[]

�

�!

C

0

[]; n not in �

local n in C[] end

�

�!

local n in C

0

[] end

C[];

C

i

[e]

�

�! C

i

[e

1

]

�

�! � � �

which again is of the required form.

ii. m > 0. Here without loss of generality we may assume �

m�1

6= � . We can almost build

a computation from C[e], except that some � steps in �

0

� � ��

m�1

and

0

� � �

n�1

may

not match. We can identify two possibilities:

A. for some j; C

j

[]

�

�!

j

C

j+1

[] where

i

6= � and e

j

�

�

�! e

0

j

j

�! e

j+1

. By Lemma A.1.2

C

j

[] "

Tick

This operator is introduced only to give a more succinct de�nition of j

D

.

De�ne

p

: V al �!D �!D by

p

v d = fold(hff

p

gg; fv 7! dgi)

Parallel

De�ne j

D

:D�D �!D by Y �X:� where

� = fold(up(R X)) and

R(hA; fi; hB; gi) =

X

� fT

AB

j A 2 A; B 2 B g

where

t

AB

= if INT (A;B) = ;

then sumext(A;B)

else (sumext(A;B) + sumint(A;B)) � sumint(A;B)

and

sumext(A;B) =

X

fEXT (A;B)g

sumint(A;B) =

X

� fINT (A;B)g

INT (A;B) = fX(f(n?)(v); g(n!)(v) j n? 2 A; n! 2 B; v 2 dom(g(n!)) g [

fX(f(n!)(v); g(n?)(v) j n! 2 A; n? 2 B; v 2 dom(f(n!)) g

EXT (A;B) = f in

D

(n; �v:X(f(n?)(v); d

2

) j n? 2 A g [

f in

D

(n; �v:X(d

1

; g(c?)(v)) j n? 2 A g [

f

p

[7] K. Havelund. The Fork Calculus: Towards a Logic for Concurrent ML. PhD thesis, Ecole Normale

Superieur, Paris, 1994.

[8] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts, 1988.

[9] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes with value-passing. Infor-

mation and Computation, 107(2):202{236, 1993.

[10] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood Cli�s,

1985.

[11] A. Ingolfdottir. Semantic Models for Communicating Processes with Value Passing. PhD thesis,

University of Sussex, 1994.

[12] K. Larsen. Compositional Theories based on an Operational Semantics of Contexts. Technical Re-

port R 89-32, University of Aalborg, Department of Mathematics and Computer Science, Sepember

1989.

[13] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cli�s, 1989.

[14] E. Moggi. Computational Lambda Calculus and Monads. Report ECS-LFCS-88-66, Edinburgh

LFCS, 1988.

[15] J.H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, M.I.T., 1968.

[16] F. Nielson and H.R. Nielson. From cml to process algebras. Report DAIMI PB-433, University of

Arhus, 1993.

[17] G.D. Plotkin. Lecture notes in domain theory, 1981. University of Edinburgh.

[18] John Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, June 1992. Technical

Report TR 92-1285.

[19] M.Tofte R.Milner and R.Harper. The De�nition of Standard ML. MIT Press, 1990.

[20] B.

