
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Typed behavioural equivalences for

Typed behavioural equivalenes for proesses

in the presene of subtyping

Matthew Hennessy and Julian Rathke

Abstrat. We study typed behavioural equivalenes for the �-alulus, in whih the

type system allows a form of subtyping. This enables proesses to seletively distribute

di�erent apabilities on ommuniation hannels.

The equivalenes onsidered inlude typed versions of testing equivalenes and

barbed bisimulation equivalenes.

We show that these an be haraterised via standard tehniques applied to a novel

labelled transition system of on�gurations. These onsist of a proess term together

with two related type environments; one onstraining the proess and the other its

omputing environment.

1

1 Introdution

Type systems are playing an inreasingly important role in the theory of

distributed systems. They are essentially a form of stati analysis whih

help in the elimination of run-time errors from programs. Within the

theory of distributed systems this intuitive notion of run-time error has

been extended to inlude a diverse range of properties. For example in

[12, 3℄ type systems have been designed to detet potential deadloks

while [18℄ introdued a system of types for the �-alulus whih are used

to ontrol the interpretation of the �-alulus. This system of types was

extended further in [17℄ and now forms the basis for the powerful type

system implemented in the programming language Pit, [19℄; related type

systems for higher-order onurrent languages may be found in [10, 11℄.

In papers suh as [21, 20℄ types have been used to manage aess ontrol

to resoures, while in [22℄ notions of trust have been inorporated in order

to protet good host sites from bad omputing agents.

Sub-typing is an essential part of most of these systems. For example

in Pit (aording to [19℄, page 9) it is relatively rare for ommuniation

hannels to be used for both input and output in the same \region" of a

program. Typially servers have one form of aess while lients require a

di�erent form. These aess requirements an be implemented and man-

aged using a subtype relation on the set of types. For example a partiular

hannel may be delared with a type whih allows both read and write

1

Researh partially funded by EPSRC grant GR/M71169

2 Matthew Hennessy and Julian Rathke

aess; this hannel ould be passed to one proess, say a server, at a sub-

type whih only allows read, or input aess, and passed to a lient at a

di�erent subtype, allowing write, or output aess only. Indeed in papers

suh as [21, 25℄ types are viewed as sets of apabilities, suh as read aess

and write aess, and sending a name to a proess at a

4 Matthew Hennessy and Julian Rathke

T; U ::= Terms

u?(X : A)T Input

u!hviT Output

if u = v then T else U Mathing

(new n : A) T Name Creation

T j T Conurreny

�T Repetition

0 Termination

X;Y ::= Patterns

x variable

(X

1

; : : : ; X

n

) tuple

u; v; w ::= Values

bv base value

n name

x variable

(u

1

; : : : ; u

n

) tuple

Figure 1. The Syntax

review our version of the �-alulus, whih uses a set of types derived from

those in [21℄, although they are only a minor variation of those from [18℄;

the setion ontains a standard operational semantis, in terms of an lts,

that is a labelled transition system, a type inferene system and a state-

ment of Subjet Redution. In Setion 3 we de�ne the typed behavioural

equivalenes whih are the main onern of the paper. This is followed by

the prinipal setion of the paper, Setion 4, where we de�ne the set typed

ations whih gives rise to the lts Conf ; this setion also ontains an anal-

ysis of Conf and proofs of the various properties we require of it. This

is followed by two tehnial setions, Setion 5 whih ontains a hara-

terisation of the typed testing equivalenes, and Setion 6

6 Matthew Hennessy and Julian Rathke

(l-out)

a!hviP

a!v

��! P

(l-in)

a?(X : A)P

a?v

��! Pfjv=X jg

(l-open)

P

(~

8 Matthew Hennessy and Julian Rathke

(t-id)

�(u) <: A

� ` u : A

(t-base)

bv 2 Base

� ` bv : Base

(t-tup)

� ` v

i

: A

i

(8i)

� ` (v

1

; : : : ; v

k

) : (A

1

; : : : ;A

k

)

(t-in)

�; X : A ` T

� ` u : rhAi

� ` u?(X : A)T

(t-out)

� ` u : whAi

� ` v : A

� ` T

� ` u!hviT

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

(t-new)

�; a : A ` T

� ` (new a : A) T

(t-str)

� ` T; U

� ` T j U; �T; 0

Figure 4. The Typing Rules

of the �-alulus has name mathing and therefore a name at type > an

be ompared to other names.

Thus our types are a generalisation of those introdued in [18℄. The

subtyping relation <: an also be viewed as the obvious generalisation of

their subtyping relation. In fat our types, and our subtyping relation,

are a mild variation of those used in [21℄, to whih the reader is referred

for more details, partiularly with respet to the following result:

Proposition 2.1 The set of types Types is a preorder with respet to <:,

with both a partial meet operation u and a partial join t. 2.

The essential point here is that if two types A

1

;A

2

are bounded below,

that is B <: A

1

; B <: A

1

for some type B then they have a greatest lower

bound, A

1

uA

2

. Intuitively A

1

uA

2

is the \union of the apabilities" in A

1

and A

2

. Beause the write apability wh�i is ontravariant with respet

to <: the de�nition of u requires the existene of a partial join t.

We now present the type inferene rules for proess terms in Figure 4.

The judgements are of the form � ` T where � is a type environment, that

is a �nite mapping from identi�ers, variables and names, to types.

For an identi�er id we write �; id : A for the type environment obtained

by augmenting � so as to map id to A; this notation is only de�ned if id

is not already in the domain of �. More generally we use � u id : A to

mean the type environment �; id : A if id is not in the domain of � and �

0

otherwise, where �

0

is equal to � exept possibly at id, where �

0

takes the

value �(id) u A (if de�ned). This notation is generalised in the obvious

way to values. We will often write � for losed type environments whose

Typed behavioural equivalenes for proesses in the presene of subtyping 9

domain onsists solely of names.

The reader familiar with the input/output apability types of �-alulus,

[18℄, should �nd little surprise in

12 Matthew Hennessy and Julian Rathke

neessarily known to the urrent type environment �, although it does not

allow us to extend the types of values whih are already in the domain

of �. However even on losed terms there may be a di�erene between a

relation R and its open extension R

o

; in general for � j= P R

o

Q to be

true we must have �;�

0

j= P R Q for every allowed �

0

. Note that this is

a form of weakening.

De�nition 3.3 A typed relation R is said to losed with respet to weak-

ening, or w-losed, if R

o

= R.

All the behavioural equivalenes we will onsider will be w-losed. to

de�ne these we need to onsider a number of properties of typed relations.

Redution losed: The typed relationR is redution losed whenever

� j= P R Q and P

�

�! P

0

implies there exists some Q

0

suh that Q =) Q

0

and � j= P

0

R Q

0

.

Contextual: Contexts are de�ned by extending the syntax in Figure 1,

allowing typed holes [�

�

℄ in terms. The typing system in Figure 4 is ex-

tended to ontexts in the obvious way, by adding the rule

(t-xt)

�;�

0

` [�

�

℄

We use C[℄ to denote ontexts with at most one hole and C[T ℄ the term

whih results from substituting the term T into the hole. We leave the

reader to establish

Proposition 3.4 �

0

` T and � ` C[�

�

0

℄ implies � ` C[T ℄. 2

Then we say the typed relation R is ontextual whenever �

0

j= T R

o

U

and � ` C[�

�

0

℄ implies � j= C[T ℄ R

o

C[U ℄.

Unravelling this de�nition gives the following example onsequenes

for ontextual relations over losed terms.

� � j= P R P

0

implies �;�

0

j= P R P

0

� � j= P R P

0

and � ` Q implies � j= P jQ R P

0

jQ.

� � j= P R P

0

and � ` a!hvi 0 implies � j= a!hviP R a!hviP

0

.

� If � ` a : rhAi and for every v, �

0

, suh that �;�

0

` v : A we have

�;�

0

j= Tfjv=Xjg R Ufjv=X jg then �;�

0

j= a?(X : A)T R a?(X : A)U .

� �; a : A j= P R P

0

implies � j= (new a : A) P R (new a : A)

Typed behavioural equivalenes for proesses in the presene of subtyping 13

that �;�

0

` v : A; this inludes values v whih are not known in the

urrent environment �.

Barb Preserving: For a given name a suh that � ` a : rwh>i. we

write � j= P +

barb

a if there exists some P

0

suh that P

�

�!

�

P

0

and

P

0

a!hi

��!. Then we say the typed relationR is barb preserving if �

14 Matthew Hennessy and Julian Rathke

(tylts-red)

P

�

�! P

0

I; � ` P

�

�! I; � ` P

0

(tylts-out)

I

r

(a) #

I; � ` a!hviP

a!v

��! I u v : I

r

(a);� ` P

(tylts-in)

I

w

(a) # I ` v : I

w

(a)

I; � ` a?(X : A)P

a?v

��! I; � ` Pfjv=Xjg

(tylts-open)

I; b : >; �; b : B ` P

(~)a!v

���! I

0

; �

0

` P

0

I; � ` (new b : B) P

(be)a!v

����! I

0

; �

0

` P

0

b 6= a

b 2 fn(v)

(tylts-txt)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` �P

�

�!
I

0

; �

0

` �P j P

0

(tylts-equiv)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � `Q

�

�!
I; �

0

` P

0

P �

�

Q

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` P jQ

�

�! I

0

; �

0

` P

0

jQ

I; � `Q j P

�

�! I

0

; �

0

`Q j P

0

0

`

Typed behavioural equivalenes for proesses in the presene of subtyping 15

� I is ompatible with �

� � ` T

The environment I represents the environment's view of the types allo-

ated to the names in the proess. For this reason this view must aord

with the atual types alloated to these names. This is guaranteed by

requiring I :> � where � is the atual type ontext for the term under

investigation. Essentially this says that the environment annot know a-

pabilities for a hannel whih simply do not exist. The requirement that

the domains of the environments be the same is a tehnial means of en-

suring uniqueness of fresh names. We use Conf , ranged over by C;D, to

denote the set of all on�gurations.

The generating rules for the transition system of typed ations are de-

�ned in Figure 5 and are to be understood as ating on on�gurations.

The rules are obtained from those in Figure 2 by taking the type envi-

ronment of the omputing ontext, I, into aount; essentially ations are

only possible if they are allowed by I. Note also that the type annotations

on the bound names of output ations are dropped; they are only required

in Figure 2 for the de�nition of the untyped redution relation

�

�!.

Note also that a priori the rule (tylts-out) is partial in the sense that

the onlusion an only be formed if the extended environment Iuv : I

r

(a)

is well de�ned. However the �rst part of the next Proposition establishes

that this meet always exists. It also proves that the set of on�gurations

is preserved by the transitions.

Proposition 4.2

� If I

r

(v) exists and � <:

16 Matthew Hennessy and Julian Rathke

This means that �(v) <: A (by (ii)), and that A <: �

w

(a) (by (i)). We

know that I

r

(a) # and, as I :> �, thus �

r

(a) # also. By virtue of being

a well-formed type it must be the ase that �

w

Typed behavioural equivalenes for proesses in the presene of subtyping 19

For the onverse, part (ii), we use the ase � = a?b as an illustrative

example. Suppose then that I; Æ : rwh(I)i ` C

I

�

and

P j C

I

�

=) P

0

j Æ!hv

0

i

for some v

0

. It must be the ase, as Æ is fresh to P , that v

0

is v

I

and,

by analysis of the redution rules, that P =)

a?b

��!=) P

0

. Now, we know

that I; Æ : rwh(I)i ` C

I

�

so from this we an dedue that this must have

been inferred from I ` a : whBi and I ` b : B for some type B suh that

B <: I

w

(a). This ensures I

w

(a) # and I ` b : I

w

(a), allowing us to apply

Lemma 4.3 to obtain the required

I; � ` P =)

a

20 Matthew Hennessy and Julian Rathke

Proposition 5.2 The relations

�

<

may

and

�

=

must

over on�gurations are

w-losed.

Proof: A simple orollary of Lemma 2.3. 2

We now give alternative haraterisations to these behavioural preorders.

5.1 May Testing

Typed ations are extended to typed traes a straightforward manner:

� I; � ` P

"

=) I; � ` P

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

00

`P

00

implies I; �`P

s

=)

I; �

00

` P

00

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

0

`P

00

implies I; �`P

��s

=)

I; �

00

` P

00

The haraterisation depends on a Deomposition and Composition result

for these sequenes. This requires an asymmetri de�nition of omplemen-

tary ation. For a visible ation � we let � denote a!v if � is a?v and a?v if

� has the form (~ :

~

C)a?v. Thus � transforms an ation from the untyped

semantis in Figure 2 to one from the typed semantis in Figure 5. It is

extended to sequenes in

Typed behavioural equivalenes for proesses in the presene of subtyping 21

Output from P to T : Here we have

T j P

�

�! (new

~

d :

~

D) (T

0

j P

0

)

�

�!

�

(new

~

d :

~

D) R

0

where

T

a?v

��! T

0

P

(

~

d:

~

D)a!v

�����! P

0

:

Again we an apply Subjet Redution to the �rst ation to obtain

I

r

(a) # and we an apply the third part of Lemma 4.3, this time to

obtain the typed ation I; � ` P

(

~

d:

~

D)a!v

�����! I u v : I

r

(a);�;

~

d :

~

D `Q

Also, sine I u v : I

r

(a) is de�ned, Subjet Redution gives I u v :

I

r

(a) ` T

0

and so we an apply indution to the sequene T

0

jP

0

�

�!

�

R

0

to obtain the remainder of the typed trae.

2

Note that this result is not true if T ontains any ourrenes of (new n) ().

Example 5.4 Suppose T; P represent the terms (new : C) a!hi ?() T

0

and a?(x) x!hiP

0

respetively, where C is the type rwhi, and suppose that

I and � are ompatible environments suh that I ` T , � ` P and I

r

(a) =

�

r

(a) = whi; these are easy to onstrut. Then the derivation T jP

�

�!

�

�!

(new : C) T

0

j P

0

an not be deomposed.

This is a onsequene of the assumption built into our on�gurations

I; � ` P , that I <: �.

Theorem 5.5 (Trae Composition) Suppose

Typed behavioural equivalenes for proesses in the presene of subtyping 25

� I ` A(s;D)

� Q 6must A(s;D) beause of the derivation from Q whih gives rise to

the aeptane set D

� but by onstrution P must A(s;D); note this holds even in the ase

when A(I; � ` P; s) is empty.

2

6 Bisimulation

We now desribe our haraterisation of the o-indutively de�ned be-

havioural equivalene,

�

=

xt

obs

, outlined in Setion 3.2.

First we reall the de�nition of weak bisimulation from [13℄.

De�nition 6.1 Given a labelled transition system T , we say that a binary

relation R on T is a bisimulation if whenever n R m then

� if n

�

�! n

0

then there exists a m

�̂

=) m

0

suh that n

0

R m

0

� if m

�

�! m

0

then there exists a n

�̂

=) n

0

suh that n

0

R m

0

where �̂ is ", the empty string, if � is � and � otherwise.

Our intention is to show that

�

=

xt

obs

an be haraterised in terms of a

bisimulation over Conf .

However as in Setion 5 we have a mismath between the formalisation

of this relation,

�

=

xt

obs

, in Setion 3.2, whih only uses one type environment,

of the proess being observed, and that of bisimulation equivalene, whih

uses two type environments. As with testing, we reonile this di�erene

by extending the de�nition of

�

=

xt

obs

so that it takes into aount both

environments.

First we generalise De�nition 3.2 by now saying that an (extended)

typed relation is a familyR of relations over typed proesses, parametrised,

as before, by losed type environments, whih satis�es: (� ` P) R

I

(�

0

`

Q) implies I; � ` P and I; � ` Q are on�gurations: To onform to

our previous notation we write this as

I j= (� ` P) R (�

0

` Q):

although e�etively these are restrited forms of relations over on�gura-

tions.

De�nition 6.2 Let (typed) bisimulation equivalene be the largest typed

relation � whih is

26 Matthew Hennessy and Julian Rathke

� a weak bisimulation

� w-losed, that is satisfying I j= (� ` P) R (�

0

` Q) implies I;�

00

j=

(�;�

00

` P) R (�

0

;�

00

` Q)

Bisimulation equivalene will be written as

I j= (� ` P) � (�

0

` Q):

Note that the seond requirement is required beause we have already seen

that

�

=

xt

obs

is w-losed. Intuitively its inlusion allows environments to pass

new values to proesses under investigation.

Two natural properties of (typed) bisimulation equivalene is given in

the following proposition:

Proposition 6.3 Suppose I j= (� ` P) � (�

0

` Q). Then

� for any appropriate �

00

, I;�

00

j= (�;�

00

` P) � (�

0

;�

00

` Q).

� If I <: I

0

then I

0

j= (� ` P) � (�

0

` Q)

Proof: The �rst result is simply a re-iteration of the fat that � is w-

losed. Intuitively the seond property is true beause I onstrains the

behaviour under whih P and Q are ompared. If they are equivalent

under the onstraint I then they should remain equivalent when they are

onstrained further, by I

0

. To prove it formally let the familyR be de�ned

by

I

0

j= (� ` P) R (�

0

` Q)

if I j= (� ` P) � (�

0

` Q) for some I <: I

0

. This family is w-losed by

de�nition, and it is straightforward to show that it is a bisimulation. It

follows that R � �, pointwise, from whih the result follows. 2

Let us now turn our attention to giving a similar formulation to

�

=

Typed behavioural equivalenes for proesses in the presene of subtyping 27

(xt-spe)

I j= (� ` P) R (�

0

` Q); I <: I

0

I

0

j= (�;` P) R (�

0

;` Q)

(xt-weak)

I j= (� ` P) R (�

0

` Q)

I;�

00

j= (�;�

00

` P) R (�

0

;�

00

` Q)

(xt-in)

I ` a : rhAi

I;�

00

j= (�;�

00

` T [v=X℄) R (�

0

;�

00

` U [v=X℄); whenever I;�

00

` v : A

I j= (� ` a?(X : A)T) R (�

0

` a?(X : A) :U)

(xt-out)

I ` u : whAi

I ` v : A

I j= (� ` P) R (�

0

` Q)

I j= (� ` u!hviP) R (�

0

` u!hviQ)

(xt-math)

� ` u : A; v : A

0

�

0

` u : B; v : B

0

I j= (� ` P

0

) R (�

0

` Q

0

)

I j= (� u fu : A

0

; v : Ag ` P) R (�

0

u fu : B

0

; v : Bg ` Q)

I j= (� ` if u = v then P else P

0

) R (�

0

` if u = v then Q else Q

0

)

(xt-new)

I; a : > j= (�; a : A ` P) R (�

0

; a : A ` Q)

I j= (� ` (new a : A) P) R (�

0

` (new a : A) Q)

(xt-par)

I j= (� ` P) R (�

0

` Q)

I ` R

I j= (� ` P jR) R (�

0

` Q jR)

I j= (� ` R j P) R (�

0

` R jQ)

(xt-iter)

I j= (� ` P) R (�

0

` Q)

I j= (� ` �P) R (�

0

` �Q)

Figure 6. Contextuality for indexed relations over on�gurations

28 Matthew Hennessy and Julian Rathke

however that the �rst two rules, (xt-spe) and (xt-weak), automat-

ially build in speialisation and weakening properties, respetively. This

may seem arti�ial but is justi�ed by the following result, whih shows

that we do indeed have a generalisation of the de�nition of

�

=

xt

obs

from

Setion 3.2:

Proposition 6.4 � j= (� ` P)

�

=

xt

obs

(� ` Q) if and only if � j= P

�

=

xt

obs

Q.

Proof: We �rst show the if diretion. De�ne a typed relationR by letting

I j= (� ` P) R (� ` Q)

if � j= P

�

=

xt

obs

Q and � <: I. R is symmetri, redution losed and

barb preserving. Using the fat that

�

=

xt

obs

, as a family of relations over

proesses, is ontextual, we an show that it satis�es all of the rules in

Figure 6.

Therefore R is ontained pointwise in

�

=

xt

obs

, from whih the result

follows, sine � j= P

�

=

xt

obs

Q implies � j= (� ` P) R (� ` Q).

The onverse is similar. Let the family of relations R, over proesses,

be de�ned by

� j= P R Q if � j= (� ` P)

�

=

xt

obs

(� ` Q):

Here the result will follow if we an show that R is ontained pointwise

in

�

=

xt

obs

, whih in turn will follow if we an show that R satis�es all the

de�ning properties of

�

=

xt

obs

. The proof that it is symmetri, redution

losed and barb preserving is straightforward.

It remains to show ontextuality, that �

0

j= T R

o

U and � ` C[�

�

0

℄

implies � j= C[T ℄ R

o

C[U ℄. This is proved by indution on the derivation

of � ` C[�

�

℄, using the rules in Figure 6. Note that the rule (xt-spe)

is essential in the proof of the ase in whih the ontext is dedued using

(t-new).

2

The remainder of this setion is devoted to showing that this gener-

alised ontextual equivalene oinides with weak bisimulation on Conf ;

that is I j= (� ` P)

�

=

xt

obs

(�

0

` Q) if and only if I j= (� ` P) � (�

0

` Q).

6.1 Soundness

First let us show that typed bisimulation equivalene is preserved, in some

appropriate manner, by the prinipal operators of the language.

Typed behavioural equivalenes for proesses in the presene of subtyping 29

Proposition 6.5 If I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q) then

I j= (� ` (new a : A) P) � (�

0

` (new a : A) Q).

Proof: Let the relation R over typed proesses be de�ned by

I j= (� ` R) R (� ` S)

if

� I j= (� ` R) � (� ` S)

� or R S, have the form (new a : A) P; (new a : A) Q, respetively, and

I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q).

Then R is w-losed by de�nition. We show it is a bisimulation,

from whih the result will follow sine we will have established that,

pointwise, R is ontained in �.

We show how every possible move from I; � ` R an be mathed

by one from I; � ` S. The only non-trivial ases are when R; S have

the seond form above. From the de�nition of typed ations in Figure 5

there are two possibilities.

1. The move is inferred using the rule (tylts-open):

I; � ` (new a : A) P

(a)�

��! I

0

; �

�

` P

0

30 Matthew Hennessy and Julian Rathke

where a 62

n

(�).

Here the proof is similar. We an �nd a mathing move from I; a :

>; �

0

; a : A ` Q and then use (tylts-txt) to obtain the required

mathing move from I; � ` (new a : A) Q.

2

Proposition 6.6 Suppose I ` R. Then I j= (� ` P) � (�

0

` Q) implies

I j= (� ` P jR) � (�

0

` Q jR).

Proof: Here, beause of the possible internal ommuniations between R

and P; Q, the required de�nition of the relation over typed proesses is

somewhat ompliated.

De�ne the relation R suh that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

if and only if there exists an I

0

ompatible with �

0

and �

0

0

suh that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q) and I; I

0

` R

and show that R forms a bisimulation.

Suppose then that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

and that

I; � ` P jR

�

�! I

0

; �

00

` P

0

:

This presupposes the existene of an environment I

0

ompatible with both

�

0

and �

0

0

with the properties outlined in the de�nition of R . If � is a not

a � -ation then we know that the transition derives either from P or from

R. In either ase, we an use the hypothesis to obtain a orresponding

transition from Q or from R again. So, the interesting ase is when � is a

� ation. Consider how this an our:

(i) P or R performs a � ation independently.

(ii) P

(~:

~

C)a!v

�����! P

0

and R

a?v

��! R

0

so that P

0

is (new�

0

; ~ :

~

C) P

0

j R

0

for

some

~

C.

(iii) P

a?v

��! P

0

and R

(~:

~

C)a!v

�����! R

0

so that P

0

is (new�

0

; ~ :

~

C) P

0

jR

0

Obviously the �rst ase (i) is treated as the ase above when � is not a �

ation.

32 Matthew Hennessy and Julian Rathke

and, again by Subjet Redution, Theorem 2.2, it is easy to see that

I

+

` R

0

, whene

I j= (� ` (new�

0

; ~ :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~ :

~

C) Q

0

jR

0

)

as required.

2

We now have most of the ingredients to prove:

Theorem 6.7 (Soundness)

If I j= (� ` P) � (�

0

` Q) then I j= (� ` P)

�

=

xt

obs

(�

0

` Q):

Proof: It is easy to see that � is a redution losed, symmetri and barb

preserving relation over typed proesses. If we an demonstrate that it

is also ontextual then, beause of the the fat that

�

=

xt

obs

is the largest

suh relation we have our result. Therefore we only have to prove that �

satis�es all the rules in Figure 6.

The rules (xt-spe) and (xt-weak) are overed by Proposition 6.3,

while (xt-new) and (xt-par) have just been established in the previous

two Propositions. The remaining rules an be handled in a similar manner,

by setting up an appropriate w-losed relation over typed proesses and

showing it is a bisimulation.

2

6.2 Completeness

Here we show the onverse of Theorem 6.7, ompleteness, namely that

ontextual equivalene implies bisimularity. To do so we only need a re-

strited version of ontextual equivalene. Let

�

=

p-xt

obs

denote the largest

relation over on�gurations whih is redution losed, barb preserving and

ontextual with respet to parallel and new name ontexts, that is satis-

�es the rules (xt-spe), (xt-weak), (xt-par) and (xt-new) from

Figure 6. It is lear that

�

=

xt

obs

implies

�

=

p-xt

obs

so, in fat, it suÆes to prove

ompleteness for the latter and we shall use this relation from now on.

Before we prove this theorem it will be useful to present a tehnial

lemma. It is here that we utilize the exported names in the terms whih

witness the ontextuality of labels. Essentially, the lemma states that the

environment really an ollate the information gained via the lts.

Lemma 6.8 Suppose I

0

is ompatible with �; ~ :

~

C and �

0

; ~ :

~

C and Æ is

fresh to P;Q. Then

Typed behavioural equivalenes for proesses in the presene of subtyping 33

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new ~ :

~

C) P j Æ!v

I

0

)

�

=

p-xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new ~ :

~

C

0

) Q j Æ!v

I

0

)

implies

I

0

j= (�; ~ :

~

C ` P)

�

=

p-xt

obs

(�

0

; ~ :

~

C

0

` Q):

Proof: We prove this by o-indution. Let the relation R

I

0

be de�ned

for I

0

ompatible with �;�

0

and �

0

;�

0

0

, so that

I

0

j= (�;�

0

` (new�

1

) P) R (�

0

;�

0

` (new�

0

1

) Q)

if and only if there is some Æ : rwh(I

0

)i suh that

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new�

0

;�

1

) P j Æ!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new�

0

0

;�

0

1

) Q j Æ!hv

I

0

i):

We simply need to show that R is redution losed, barb preserving,

and losed with respet to rules (xt-spe), (xt-weak), (xt-par)

and (xt-new). Redution losure is immediate by the de�nition of R ,

as is losure with respet to (xt-spe) and (xt-weak). For the other

requirements we proeed by supposing that

I

0

j= (�;�

0

` P) R (�

0

;�

0

0

` Q)

suh that Æ : rwh(I

0

)i with

I; Æ j= (�; Æ ` (new�

0

) P j Æ!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ ` (new�

0

0

) Q j Æ!hv

I

0

i):

In the above equation, for the sake of presentation, we have omitted, and

shall ontinue to do so for the remainder of this proof, to give the type

information assoiated with the barb Æ.

We �rst show losure with respet to (xt-par). Suppose I

0

` R. We

need to show that I

0

j= (�;�

0

` P j R) R (�

0

;�

0

0

` Q j R). To do this

we hoose some fresh Æ

0

and onstrut R

0

= Æ?(X : I

0

) (R[X=

n

(I

0

)℄ jÆ

0

!hi)

(reall that

n

(�) refers to the names in the domain of �). It should be

evident that Æ; Æ

0

` R

0

and, by losure of

�

=

p-xt

obs

with respet to (xt-spe),

(xt-weak), (xt-new) and (xt-par) we

34 Matthew Hennessy and Julian Rathke

and similarly for Q. Hene,

I; Æ

0

j= (�; Æ

0

` (new�

0

) P jRjÆ

0

!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ

0

` (new�

0

0

) QjRjÆ

0

!hv

I

0

i)

This serves to witness

I

0

j= (�;�

0

` P jR) R (�

0

;�

0

0

` Q jR)

as required.

The losure of R with respet to (xt-new) follows easily from the

losure of

�

=

p-xt

obs

with respet�

Typed behavioural equivalenes for proesses in the presene of subtyping 35

We hoose a fresh Æ : A

Æ

where A

Æ

denotes rwh(I

0

)i, and use Propo-

sition 4.6 to �nd a term suh that I; Æ : A

Æ

` C

I

�

with the appropriate

properties. In fat, the �rst property tells us that

I; Æ : A

Æ

; �; Æ : A

Æ

`P j C

I

�

=) I; Æ : A

Æ

; �; Æ : A

Æ

` (new ~ :

~

C) (P

0

j Æ!hv

I

0

i)

Using C

I

�

we an build a test term by hoosing further fresh names

Æ

0

: A

Æ

; a : rwh>i and letting

C

Æ

0

= a!hi j Æ?(x) a?(y) :Æ

0

!hxi

we note immediately that C

Æ

0

+

barb

a.

From ontextual losure (omitting some type information) we know

that

I; Æ

0

j= (�; Æ

0

` (new Æ) (P j C

I

�

j C

Æ

0

))

�

=

p-xt

obs

(�

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

))

We also know that the left hand side of this equation may redue (up to

a minor strutural equivalene) to

I; Æ

0

; �; Æ

0

` (new ~ :

~

C) P

0

j Æ

0

!hv

I

0

i :

We use C

P

to refer to this on�guration and observe that C

P

6+

barb

a but

C

P

+

barb

Æ

0

.

Redution losure now tells us that there must exist some mathing

redutions

I; Æ

0

; �

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

�

(Tj
/R217 0.12 Tf
7.2 0 Td
())Tj
18161 0.12 Tf
12 3602 0 Td
(thTj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Qj
/R55 0.12 Tf
-33847192.13602 0
(.)r)Tj
1821602 0 Td
(clme)Tj
37161 0.12 Tf
3.90 Td
(C)Tj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Qj
/R55 0.12 Tf
-3.5193 0 .15977 Td
(6suc)2998.66(h)]TJ
33.2 0 Td
(this)Tj
/R161 0.12 Tf
30.0801 0 Td
(teTj
/R275 0.12 Tf
10.2 16 2.16077 Td
(.)Tj
/R217 0.12 Tf
13.559f
-0Cosure)Tj
Tj
/R2855 0.12 Tf
4.68008326 0.12 Tf
11.1598 -6.osur4 Td87969/R28j
0 11.1602 Td
(Reducti/R55 0.122 Tf
30.9602 0
[(W)-4 Td
(4Tj
/R275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.12 Tf
-3.51939Td879697 Td
(6+)Tj
/09.88 11
-3.5 0 Td
(�c)299No(ust)]TJw73 0.122 Tf
31.2 0 Td
6[(W) Td
(�)Tj
/R55 0.12 Tf
4.68008326 0.12 Tf
11.1598 -6.osur4 Td
(p-cxt)Tj
0 11.1602 Td
(C)Tj
/R/R55 0.12 Tf
30.4801 -4Td
(b1 Td.8Td
Tp)-299e98.66(e)]TJ
509.2398 0
((Tj
/R
/R1s.2801 0 Td
(A)Tj
/R9.160216 Td
(that)Tj
37.7199 6 Td
(()Tj
/means.2801 7 Td
(some)Tj4.2801 5
((Tj
/Rparticular,9602 0 Td
(that)Tj
/R217 0.12 Tf
30.9602 0C)Tj
/R275 0.12 Tf
10.2 2.15977 Td
(+)Tj
/R217 0.12 Tf
14.6398 3.016 Td
(+)Tj
/RR326 0.12 Tf
8.76016 -5.28008 Td
(+)Tj
/R
/R161 0.12 Tf
27.6 5. 17.6398 2d
(Using)T55 0.12 Tf
12.1199 0 Td
(exist)T27.7199.12 Tf
26.2801 8 Td
(P)Tj
/R275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.122 Tf
14.6398 0 .88008 Td
(P)Tj
/R326 0.12 Tf
8.76016 -5.28008 Td
(barb)Tj
/R161 0.12 Tf
27.6 5.28008 Td
(barb)Tj281 0.12 Tf
6.95977 -5.88008 T2j
/R588 0.12 Tf
5.51991i016 0 Td
(A Td
(a)Tj
/R5lso.0398 0 Td
(~)Tj
/RH
48.8398 2 Td
[(no)299866(e)]TJ
22.5602 1 Td
(use)Tj000.59(w)]T6
37.6801 0 8this)Tj
/R161 0.12 Tf
30.0801 0 Td
(us)Tj
1275 0.12 Tf
10.2 2.15977 Td
(P)Tj
/R55 0.12 Tf
-3.51931577 Td
(6suc)2993(ust)]TJ
36.7199 53.6 Tdse)Tj00.69(eha))]T2.5602 0 Td
(()Tj
/R1aga4.280144 Td
(there)T6.5199 1 Td
(but)Tj
7.4 0 Td
Td
(a)Tj
13.2 0 -450 T98 Td
(C)Tj
/Rj
41.4 0 Td
Td
(~)Tj
/Rral)Tj
66.3602 0 2d
[(w)2998.001.34(alen2e))]TJ
81.2398 0 .1601fa

36 Matthew Hennessy and Julian Rathke

Soundness, Completeness and Proposition 6.4 allows us to now on-

lude with the main result of the paper:

Corollary 6.10 If � j= P

�

=

xt

obs

Q if and only if � j= (� ` P) �

o

(� ` Q).

6.3 Example

The haraterisation of the previous setions provide a onvenient o-

indutive method for establishing ontextual observational equivalene be-

tween terms. We provide a short example whih demonstrates the utility

of the bisimulation proof method. The proesses that we onsider provide

two di�erent implementations of a produer/onsumer unit server.

Clients send requests for servie along a global hannel req, whih

must be aompanied by a reply hannel whih has type at least R =

wh(w

Typed behavioural equivalenes for proesses in the presene of subtyping 37

but CU

1

6must T . The required T is given by

(new r : A

r

) req!hri r?((x; y) : (wh>i; rh>i)) x!hi!!hi

where A

r

is the type rwh(B;C)i. It is straightforward to show that this

an be typed by �

req

, that it is guaranteed by CU

1

but when applied to

Typed behavioural equivalenes for proesses in the presene of subtyping 39

are two possibilities for these: an interation between P

2

and !

m

and an

interation between P

2

and p!

k

. Note that in eah ase the resulting state

is

P

2

j !

m�1

j p!

k+1

for the former and

P

2

j !

m+1

j p!

k�1

for the latter. In either ase the total m+ k is invariant. This means that

the extra internal transitions exhibited by P

2

j !

m

j p!

k

may be mathed

in R by an empty transition from P

1

j !

n

.

It is worth mentioning here that it is not possible to observe output

transitions of the form p!hi from I; �

A

`P

2

j !

m

j p!

k

as we have supposed

that I(p) :> B :> wh>i and thus annot the read apability required

to make this observation. Similarly, it is not possible to observe input

transitions of the form ?hi from I; �

A

` P

2

.

2

This short example demonstrates the use of a o-indutive proof for

establishing ontextual observational equivalene. The use of the bisimu-

lation method allows us to establish equivalene without quantifying over

all possible lients for these servers. In e�et, the environment plays the

role of an arbitrary lient.

7 Conlusion

In this paper we have studied typed behavioural equivalenes for the �-

alulus. In partiular we have shown that natural typed versions testing

and barbed ongruenes an be aptured by applying standard tehniques

to a new lts of typed ations, Conf . Thus, at least in priniple, it should

be possible to use, or adapt, existing proof methodologies and veri�ation

systems, [4, 5℄ to prove type dependent equivalenes between proesses.

Admittedly the states, I; � ` P , in the lts are a priori ompliated, on-

sisting of a proess term P , a type environment for its omputing ontext

I and a separate type environment for the proess itself �. But the ob-

servant reader will have notied that in the rules for generated Conf ,

in Figure 5, the last type environment � plays no role. Tehnially its

presene has been onvenient for deriving our results, whih depend on

the fat that proesses are well-typed with respet to some environment

oherent with I, but in an implementation of Conf they ould be safely

omitted.

Typed proess equivalenes, as opposed to untyped ones, have nu-

Typed behavioural equivalenes for proesses in the presene of subtyping 41

equations holding in this setting vary onsiderably from ours. For instane

the well-known Repliation Theorem of �-alulus used to illustrate their

tehnique fails to hold in the presene of equality testing.

Our system allows for a gradual inrease in knowledge about types

of names and provides a fresh approah to understanding the e�ets of

subtyping on proess equivalene.

Referenes

[1℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

for the asynhronous �-alulus. Theoretial Computer Siene, 195(2):291{324,

30 Marh 1998.

[2℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing aluli without math-

ing. In Pro. 13th LICS Conf. IEEE Computer Soiety Press, 1998.

[3℄ G. Boudol. Typing the use of resoures in a onurrent alulus. In Proeedings

of the ASIAN'97, number 1345 in Leture Notes in Computer Siene, pages 239{

253, 1997.

[4℄ R. Cleaveland, J. Parrow, and B. Ste�en. The onurreny workbenh: A se-

mantis based veri�ation tool for �nite state systems. ACM Transations on

Programming Systems, 15:36{72, 1989.

[5℄ Rane Cleaveland. The onurreny fatory: A development environment for

onurrent systems. In R. Alur and T. Henzinger, editors, Proeedings of CAV'96,

volume 1102 of Leture Notes in Computer Siene, pages 398{401. Springer-

Verlag, 1988.

[6℄ C. Fournet and G.Gonthier. A hierarhy of equivalenes for asynhronous aluli

(extended abstrat). In Proeedings of ICALP'98, volume 1443 of Leture Notes

in Computer Siene, pages 844{855. Springer-Verlag, 1988.

[7℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A alulus of mo-

bile agents. In U. Montanari and V. Sassone, editors, Proeedings of CONCUR'96,

volume 1119 of Leture Notes in Computer Siene, pages 406{421, Pisa, August

1996. Springer Verlag.

[8℄ M. Hennessy. An Algebrai Theory of Proesses. MIT Press, 1988.

[9℄ Kohei Honda and Mario Tokoro. On asynhronous ommuniation semantis.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Proeedings of the ECOOP '91

Workshop on Objet-Based Conurrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[10℄ A. Je�rey. A distributed objet alulus. In Pro. ACM Foundations of Objet

Oriented Languages. IEEE Computer Soiety Press, 2000.

[11℄ A. Je�rey and J. Rathke. A theory of bisimulation for a fragment of onurrent

ml with loal names. In Pro. LICS2000, 15

th

Annual Symposium on Logi in

Computer Siene, Santa Barbara, pages 311{321. IEEE Computer Soiety Press,

2000.

[12℄ Naoki Kobayashi. A partially deadlok-free typed proess alulus. In Proeedings,

Twelth Annual IEEE Symposium on Logi in Computer Siene, pages 128{139,

Warsaw, Poland, 29 June{2 July 1997. IEEE Computer Soiety Press.

[13℄ R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.

[14℄ R. Milner. Comuniating and mobile systems: the �-alulus. Cambridge Univer-

