

2 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

• In ‘separation’ logics [23], it is used to reason about dynamic update of heap-
like structures, and it isstrongin that it forces names of resources in separated
components to be disjoint. As a consequence, term composition is usually
partially defined.

• In static spatial logics (e.g. for trees [3], graphs [5] or trees with hidden
names [6]), the separation/composition does not require any constraint on
terms, and names are usually shared between separated parts.

• Also in dynamic spatial logics (e.g. for ambients [7] orπ-calculus [1]) the
separation is intended only for locations in space.

Context tree logic, introduced in [4], integrates the first approach above with a
spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion
language for Hoare-style program specifications in a tree memory model. Es-
sentially Spatial Logic uses the structure of the model to give semantics.

Bigraphs [16, 18] are an emerging model for structures in global comput-
ing, that can be instantiated to model several well-known examples, including
λ-calculus [21], CCS [22],π-calculus [16], ambients [17] and Petri nets [20].
Bigraphs consist essentially of two graphs sharing the same nodes. The first
graph, the

BiLog: Spatial Logics for Bigraphs 3

This describes twoPC with different names,a andb, sharing a link on a distinct
namec

4 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

PC

R1
R2

1

2

U

PC

1
wzyx

2

x y

v GF 1. A bigraphG : 〈2, {x, y, z, v,w}〉 → 〈1, {x, y}〉.

graph. Place graphs express locality, that is the physical arrangement of the
nodes. Link graphs are hyper-graphs and formalise connections among nodes.
The orthogonality of the two structures dictates that nestings impose no constrain
upon interconnections.

The bigraphG of Fig. 1 represents a system where people and things inter-
act. We imagine two offices with employees logged onPCs. Every entity is
represented by a node, shown with bold outlines, and every node is associated
with acontrol (eitherPC, U, R1, R2). Controls represent the kinds of nodes, and
have fixedarities that determine their number of ports. ControlPC marks nodes
representing personal computers, and its arity is 3: in clockwise order, the ports
represent a keyboard interacting with an employeeU, a LAN connection inter-
acting with anotherPC and open to the outside network, and the mains plug of
the officeR. The employeeU may communicate with another one via the upper
port in the picture. The nesting of nodes (place graph) is shown by the inclusion
of nodes into each other; the connections (link graph) are drawn as lines.

At the top level of the nesting structure sit theregions. In Fig. 1 there is one
sole region (the dotted box). Inside nodes there may be ‘context’holes, drawn as
shaded boxes, which are uniquely identified by ordinals. The hole marked by 1
represents the possibility for another userU to get into officeR1 and sit in front
of a PC. The hole marked by 2 represents the possibility to plug a subsystem
inside officeR2.

Place graphs can be seen asarrows over a symmetric monoidal category
whose objects are finite ordinals. We writeP : m→ n to indicate a place graph
P with m holes andn regions. In Fig. 1, the place graph ofG is of type 2→ 1.
Given the place graphsP1, P2, their compositionP1 ◦ P2 is defined only if the
holes ofP1 are as many as the regions ofP2, and amounts tofilling holes with
regions, according to the number each carries. The tensor productP1 ⊗ P2 is not
commutative, as it lays the two place graphs one next to the other (in order), thus
obtaining a graph with more regions and holes, and it ‘renumbers’ regions and
holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are

BiLog: Spatial Logics for Bigraphs 5

PC

R1 R2
1

2

U

PC

1
wzyx

2

x y

v

F 2. Bigraphical composition,H ≡ G ◦ (F1 ⊗ F2).

(finite) sets of names. In particular, we assume a denumerable setΛ of names. A
link graph is an arrowX→ Y, with X,Y finite subsets ofΛ. The setX represents
the inner names (drawn at the bottom of the bigraph) andY represents the set
of outer names (drawn on the top). The link graph connects ports to names or
to edges(represented in Fig. 1 by a line between nodes), in any finite number.
A link to a name isopen, i.e., it may be connected to other nodes as an effect
of composition. A link to an edge isclosed, as it cannot be further connected
to ports. Thus, edges areprivate, or hidden, connections. The composition
of link graphsW ◦ W′ corresponds tolinking the inner names ofW with the
corresponding outer names ofW′ and forgetting about their identities. As a
consequence, the outer names ofW′ (resp. inner names ofW) are not necessarily
inner (resp. outer) names ofW ◦ W′. Thus link graphs can perform substitution
and renaming, so the outer names inW′ can disappear in the outer names of this
means that either names may be renamed or edges may be added to the structure.
As in [16], the tensor product of link graphs is defined in the obvious way only
if their inner (resp. outer) names are disjoint.

By combining ordinals with names we obtaininterfaces, i.e., couples〈m,X〉
wherem is an ordinal andX is a finite set of names. By combining the notion of
place graph and link graphs on the same nodes we obtain the notion of bigraphs,
i.e., arrowsG : 〈m,X〉 → 〈n,Y〉.

Figure 2 represents a more complex situation. Its top left-hand side reports
the system of Fig. 1, in its bottom left-hand sideF

6 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

names create the new links between the two structures. Intuitively, composition
first places every region ofF in the proper hole ofG (place composition) and
thenjoins equal inner names ofG and outer names ofF (link composition). In
the example, as a consequence of the composition the userU in the first region
of F is logged onPC, the userU in the second region ofF is in roomR2. More-
over note the edge connecting the inner namesy andz in G, its presence produces
a link between the two users ofF after the composition, imagine a phone call
between the two users.

3 BiLog: syntax and semantics

The final aim of the paper is to define a logic able to describe bigraphs and their
substructures. As bigraphs, place graphs, and link graphs are arrows of a (partial)
monoidal category, we first introduce a meta-logical framework having monoidal
categories as models; then we adapt it to model the orthogonal structures of place

BiLog: Spatial Logics for Bigraphs 7

Table 3.1.BiLog terms

G,G′ ::= Ω constructor (for Ω ∈ Θ)
G ◦ G′ vertical composition
G ⊗ G′ horizontal composition

Table 3.2.Typing rules

type(Ω) = I → J
Ω : I → J

G : I ′ → J F : I → I ′

G ◦ F : I → J

G : I1→ J1 F : I2→ J2 I = I1 ⊗ I2 J = J1 ⊗ J2

G ⊗ F : I → J

Terms represent structures built on a (partial) monoid (M,⊗, ε) whose ele-
ments are dubbedinterfacesand denoted byI , J. To model nominal resources,
such as heaps or link graphs, we allow the monoid to be partial.

Intuitively, terms represent typed structures with a source and a target inter-
face (G : I → J

8 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 3.3.Axioms

Congruence Axioms:
G ≡ G Reflexivity
G ≡ G′ implies G′ ≡ G Symmetry
G ≡ G′ and G′ ≡ G′′ implies G ≡ G′′ Transitivity
G ≡ G′ and F ≡ F′ implies G ◦ F ≡ G′ ◦ F′ Congruence ◦
G ≡ G′ and F ≡ F′ implies G ⊗ F ≡ G′ ⊗ F′ Congruence ⊗

Monoidal Category Axioms:
G ◦ idI ≡ G ≡ idJ ◦ G Identity
(G1 ◦ G2) ◦ G3 ≡ G1 ◦ (G2 ◦ G3) Associativity
G ⊗ idε ≡ G ≡ idε ⊗ G Monoid Identity
(G1 ⊗ G2) ⊗ G3 ≡ G1 ⊗ (G2 ⊗ G3) Monoid Associativity
idI ⊗ idJ ≡ idI⊗J Interface Identity
(G1 ⊗ F1) ◦ (G2 ⊗ F2) ≡ (G1 ◦ G2) ⊗ (F1 ◦ F2) Bifunctoriality

terms in general. When the framework is instantiated, terms specialise to rep-
resent particular structures and the logic specialises to describe such a particu-
lar structures as well. The semantics of a BiLog formula corresponds to a sets
of terms. The logic will feature spatial connectives in the sense Spatial Log-
ics [1, 7].

3.2 Transparency

In general not every structure of the model corresponds to an observable struc-
ture in a spatial logic. A classical example is ambient logic. Some mobile ambi-
ent constructors have their logical equivalent, e.g. ambients, and other ones are
not directly mapped in the logic, e.g. thein andout prefixes. In this case the
observability of the structure is distinguished from the observability of the com-
putational terms: some terms are used to express behaviour and other to express
structure. Moreover there are terms representing both structure and possible be-
haviour, since ambients can be opened.

The structure may be used not only to represent the distribution or the shape
of resources but also to encode their behaviour. We may want to avoid a direct
representation of some structures at logical level of BiLog. A natural solution is
to define a notion oftransparencyover the structure. In such a way, entities re-
ally representing the structure aretransparent, while entities encoding behaviour
areopaqueand cannot be distinguished by the logical spatial connectives. As
bifunctorial terms are interpreted as arrows, transparent terms allow the logic to
see their entire structure till the source interface, while opaque terms block the
inspection at some middle point. A notion of transparency can also appear in

BiLog: Spatial Logics for Bigraphs 9

models without temporal behaviour. In fact, consider a model with an access
control policy defined on the structure. The policy may be variable and defined
on constructors by the administrator. Thus, some terms may be transparent or
opaque, depending on the current policy, and the visibility in the logic, or in the
query language, will be influenced by this.

When the model is dynamic, the reacting contexts, namely those with a pos-
sible temporal evolution, are specified with an activeness predicate. We may be
tempted to identify transparency as the activeness of terms. Although these con-
cepts coincide in some case, in general they are completely orthogonal. There
may be transparent terms that are active, such as a public location/directory;
opaque terms that are active, such as an agent that hides its content; passive
transparent terms, such as a script code; and passive opaque terms, such as con-
trols encoding synchronisation. Indeed, the transparency isorthogonalto the
concept of activeness.

More generally the transparency predicate avoids that every single term in
the structure is mapped to its logical equivalent. Models can have additional
structure not observable. Consider, as another example, an XML document. We

10 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 3.4.BiLog(M,⊗, ε,Θ,≡, τ)

Ω ::= id I | . . . a constant formula for every Ω s.t. τ(Ω)

A, B ::= F false A⇒ B implication
id identity Ω constant constructor
A ⊗ B tensor product A ◦ B composition
A � B left comp. adjunct A (B right comp. adjunct
A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct

G |= F iff never
G |= A⇒ B iff G |= A implies G |= B
G |= Ω iff G ≡ Ω

G |= id iff exists I s.t. G ≡ idI

G |= A ⊗ B iff exists G1,G2 s.t. G ≡ G1 ⊗ G2, with G1 |= A and G2 |= B
G |= A ◦ B iff exists G1,G2. s.t. G ≡ G1 ◦ G2,

with τ(G1) and G1 |= A and G2 |= B
G |= A � B iff for all G′, the fact that G′ |= A and τ(G′) and (G′ ◦ G)↓

implies G′ ◦ G |= B
G |= A (B iff τ(G) implies that for all G′,

if G′ |= A and (G ◦ G′)↓ then G ◦ G′ |= B
G |= A ⊗− B iff for all G′, the fact that G′ |= A and (G′ ⊗ G)↓

implies G′ ⊗ G |= B
G |= A −⊗ B iff for all G′, the fact that G′ |= A and (G ⊗ G′)↓

implies G ⊗ G′ |= B

see that when all terms are observable the logical equivalence corresponds to
≡. Otherwise, it can be less discriminating. We assume thatidI

BiLog: Spatial Logics for Bigraphs 11

and place graph. Thevertical decompositionformulaA ◦ B is satisfied by terms
that can be the composition of terms satisfyingA and B. We shall see that in
some cases both the connectives correspond to well known spatial connectives.
We define theleft andright adjunctsfor composition and tensor to express ex-
tensional properties. The left adjunctA � B expresses the property of a term to
satisfyB whenever inserted in a context satisfyingA. Similarly, the right adjunct
A (B expresses the property of a context to satisfyB whenever filled with a
term satisfyingA. A similar description for⊗− and−⊗, the adjoints of⊗. They
collapse if the tensor is commutative in the model.

3.4 Properties
Here we show some basic results about BiLog. In particular, we observe that,
in presence of trivial transparency, the induced logical equivalence coincides
with the structural congruence of the terms. Such a property is fundamental
to describe, query and reason about bigraphical data structures, as e.g. XML
(cf. [12]). In other terms, BiLog isintensionalin the sense of [25], namely it can
observe internal structures, as opposed to the extensional logics used to observe
the behaviour of dynamic system. Inspired by [15], it would be possible to study
a fragment of BiLog without the intensional operators⊗, ◦, and constants.

The lemma below states that the relation|= respects the congruence.

Lemma 1 (Congruence preservation).For every couple of term G and G′:

if G |= A and G≡ G′ then G′ |= A.

Proof. Induction on the structure of the formula, by recalling that the congruence
is required to preserve the typing and the transparency. In detail

C F. Nothing to prove.

C Ω. By hypothesisG |= Ω andG ≡ G′. By definition G ≡ Ω and by
transitivityG′ ≡ Ω, thusG′ |= Ω.

C id. By hypothesisG |= id andG ≡ G′. Hence there exists anI such that
G′ ≡ G ≡ idI and soG′ |= id.

C A⇒ B. By hypothesisG |= A⇒ B andG ≡ G′. This means that ifG |= A
thenG |= B. By induction ifG′ |= A thenG |= A. Thus ifG′ |= A thenG |= B
and again by inductionG′ |= B.

C A ⊗ B. By hypothesisG |= A ⊗ B andG ≡ G′. Thus there existG1, G2B

12 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

C A � B. By hypothesisG |= A � B andG ≡ G′. Thus for everyG′′ such
thatG′′ |= A andτ(G′′) and (G′′ ◦ G)↓ it holdsG′′ ◦ G |= B. Now G ≡ G′

impliesG′′ ◦ G ≡ G′′ ◦ G′; moreover the congruence preserves typing, so
(G′′ ◦ G′)↓ . By inductionG′′ ◦ G′ |= B, then concludeG′ |= A � B.

C A (B. If τ(G′) is not verified, thenG′ |= A (B trivially holds. Suppose
τ(G′) to be verified. AsG ≡ G′ and transparency preserves congruence,
τ(G) is verified as well. By hypothesis for eachG′′ satisfyingA such that
(G ◦ G′′)↓ it holdsG ◦ G′′ |= B, and by inductionG′ ◦ G′′ |= B, asG ≡ G′

and (G ◦ G′′)↓ implies (G′ ◦ G′′)↓ andG ◦ G′′ ≡ G′ ◦ G′′. This proves
G′ |= A (B.

C A ⊗− B (and symmetricallyA −⊗ B). By hypothesisG |= A ⊗− B andG ≡
G′. Thus for eachG′′ such thatG′′ |= A and (G′′ ⊗ G)↓ thenG′′ ⊗ G |= B.
Now G ≡ G′ implies G′′ ⊗ G ≡ G′′ ⊗ G′, again the congruence must
preserve typing so (G′′ ⊗ G′)↓ . Thus by inductionG′′ ⊗ G′ |= B. The
generality ofG′′ impliesG′ |= A ⊗− B.

�

BiLog induces a logical equivalence=L on terms in the usual sense. We say
thatG1 =L G2 if for every formulaA, G1 |= A impliesG2 |= A and vice versa.
It is easy to prove that the logical equivalence corresponds to the congruence in
the model if the transparency predicate is totally verified.

Theorem 1 (Logical equivalence and congruence).If the transparency predi-
cate is verified on every term, then for every term G, G′ it holds G=L G′ if and
only if G≡ G′.

Proof. The forward direction is proved by defining the characteristic formula
for terms, as every term can be expressed as a formula. In fact, the transparency

BiLog: Spatial Logics for Bigraphs 13

4 BiLog: derived operators

Table 4.1 outlines some interesting operators that can be derived in BiLog. The
classical operators and those constraining the interfaces are self-explanatory. The
‘dual’ operators need a few explanations. The formulaA	B is satisfied by terms
G such that for every possible decompositionG ≡ G1 ⊗ G2 eitherG1 |= A
or G2 |= B. For instance,A 	 A describes terms whereA is true in, at least,
one part of each⊗-decomposition. The formulaF 	 (T→I ⇒ A) 	 F describes
those terms where every component with outerfaceI satisfiesA. Similarly, the
compositionA•B expresses structural properties universally quantified on every
◦-decomposition. Both these connectives are useful to specify security properties
or types.

The adjunct dualA � B describes terms that can be inserted into a partic-
ular context satisfyingA to obtain a term satisfyingB, it is a sort of existential
quantification on contexts. For instance (Ω1 ∨Ω2) � A describes the union be-
tween the class of two-region bigraphs (with no names in the outerface) whose
merging satisfiesA, and terms that can be inserted either inΩ1 or Ω2 resulting
in a term satisfyingA. Similarly the dual adjunctA � B describes contextual
termsG such that there exists a term satisfyingA that inserted inG gives a term
satisfyingB.

The formulaeA∃⊗, A∀⊗, A∃◦, and A∀◦ correspond to quantifications on the
horizontal/vertical structure of terms. For instanceΩ∀◦ describes terms that are
a finite (possibly empty) composition of simple termsΩ. The two last spatial
modalities are discussed in the next section.

A first property involving the derived connectives is stated in the following
lemma, proving that the interfaces for transparent terms can be observed.

Lemma 2 (Type observation). For every term G, it holds: G|= AI→J if and
only if G : I → J and G|= A andτ(G).

Proof. For the forward direction, assume thatG |= AI→J, thenG ≡ idJ ◦ G′ ◦ idI

with G′ |= A andτ(G′). Now, idJ ◦ G′ ◦ idI : I → J

14 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 4.1.Derived Operators

T, ∧, ∨, ⇔, ⇐, ¬ Classical operators
AI

def
= A ◦ id I Constraining the source to be I

A→J
def
= idJ ◦ A Constraining the target to be J

AI→J
def
= (AI)→J Constraining the type to be I → J

A ◦I B def
= A ◦ id I ◦ B Composition with interface I

A �J B def
= A→J � B Contexts with J as target guarantee

A (I B def
= AI (B Composing with terms having I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A � B def
= ¬(¬A � ¬B) Dual of composition left adjunct

A � B def
= ¬(¬A (¬B) Dual of composition right adjunct

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal term satisfies A

A∀⊗ def
= F 	 A	 F Every horizontal term satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical term satisfies A

A∀◦ def
= F • Tdef

BiLog: Spatial Logics for Bigraphs 15

Proposition 1. For every term G of typeε → J, it is the case that

G |= ◊A if and only if there exists G′ v G such that G′

16 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

valid when (I ⊗ J)↓ .
In general, given two formulaeA, B we say thatA yields B, and we write

A ` B, if for every termG it is the case thatG |= A impliesG |= B. Moreover, we
write A a` B to say bothA ` B andB ` A.

Assume thatI andJ are two interfaces such that their tensor productI ⊗ J is
defined. Then, the bifuctoriality property in the logic is expressed by

(AI ◦ B→I) ⊗ (A′J ◦ B′→J) a` (AI ⊗ A′J) ◦ (B→I ⊗ B′→J). (1)

In fact, we prove the following

Proposition 2. Whenever(I ⊗ J)↓ , the equation (1) holds in the logic.

Proof. Prove separately the two way of the satisfaction. First prove

(AI ◦ B→I) ⊗ (A′J ◦ B′→J) ` (AI ⊗ A′J) ◦ (B→I ⊗ B′→J)

Assume thatG |= (AI ◦ B→I) ⊗ (A′J ◦ B′
→J). This means that there exist

G′ : I ′ → I ′′, G′′ : J′ → J′′ such thatI ′ ⊗ J′ and I ′′ ⊗ J′′ are defined, and
G ≡ G′ ⊗ G′′, with G′ |= AI ◦ B→I andG′′ |= A′J ◦ B′

→J. Now, G′ |= AI ◦ B→I

means that there existG1 andG2 such thatG′ ≡ G1 ◦ G2 and

• G1 : I → J′, with τ(G1) andG1 |= A

• G2 : I ′ → I , with G2 |= B

Similarly, G′′ |= A′J ◦ B′
→J meansG′′ ≡ G′1 ◦ G′2 and

• G′1 : J→ J′′, with τ(G′1) andG′1 |= A′

• G′2 : I ′′ → J, with G2 |= B′

In particular, concludeG ≡ (G1 ◦ G2) ⊗ (G′1 ◦ G′2). As I ⊗ J is defined,
(G1 ⊗ G′1) ◦ (G2 ⊗ G′2) is an admissible composition. The bifunctoriality
property impliesG ≡ (G1 ⊗ G′1) ◦ (G2 ⊗ G′2). Moreoverτ(G1 ⊗ G′1), asτ(G1)
andτ(G′1). Hence conclude thatG |= (AI ⊗ A′J) ◦ (B→I ⊗ B′

→J), as required.
For the converse, prove

(AI ⊗ A′J) ◦ (B→I ⊗ B′→J) ` (AI ◦ B→I) ⊗ (A′J ◦ B′→J).

Assume thatG |= (AI ⊗ A′J) ◦ (B→I ⊗ B′
→J). By following the same lines as

before, deduce thatG ≡ (G1 ⊗ G′1) ◦ (G2 ⊗ G′2), where

• τ(G1 ⊗ G′1)

• G1 : I → J′ such thatG1 |= A

• G′1 : J→ J′′ such thatG′1 |= A′

• G2 : I ′ → I such thatG2 |= B

• G′2 : I ′′ → J such thatG2 |= B′

BiLog: Spatial Logics for Bigraphs 17

Also in this case, we the tensor product of the required interfaces can be per-
formed. Hence compose (G1 ◦ G2) ⊗ (G′1 ◦ G′2). Again, the bifunctoriality

18 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 5.1.Additional Axioms for Place Graphs Structural Congruence

Symmetric Category Axioms:
γm,0 ≡ idm Symmetry Id
γm,n ◦ γn ,m ≡ idm⊗n Symmetry Composition

γm′,n ′ ◦ (G ⊗ F) ≡ (F ⊗ G) ◦ γm,n Symmetry Monoid

Place Axioms:
join ◦ (1 ⊗ id1) ≡ id1 Unit
join ◦ (join ⊗ id1) ≡ join ◦ (id1 ⊗ join) Associativity
join ◦ γ1 ,1 ≡ join Commutativity

node without children. The termG is congruent to

(service⊗ push) ◦ (join ⊗ 1) ◦ (description⊗ name).

v0aP(
)]TJ/F88 9.9639.963 Tf 3.317 0 Td[(:)]TJ/F78 9.963 Tf -263.366 -16.495 Td[(v0aP(
)]TJ/Tf 7.719 0 Td[(()]TJ/F88 9.963 Tf 3.318 0 Td[(join)]TJ/F23 oin)]TJ/F23 oin

BiLog: Spatial Logics for Bigraphs 19

Table 5.2.Information tree Terms (overΛ) and congruence

T,T′::= 0 empty tree consisting of a single root node
a[T] single edge tree labelled l ∈ Λ leading to the subtree T
T | T′ tree obtained by merging the roots of the trees T and T′

T | 0 ≡ T neutral element
T | T′ ≡ T′ | T commutativity
(T | T′) | T′′ ≡ T | (T′ | T′′) associativity

Table 5.3.Propositional Spatial Tree Logic

A, B ::= F anything a[A] location
0 empty tree A@a location adjunct
A⇒ B implication A | B composition

A . B composition adjunct

T |= F iff never
T |= 0 iff F ≡ 0
T |= A⇒ B iff T |= A implies T |= B
T |= a[A] iff there exists T′ s.t. T ≡ a[F′] and T′ |= A
T |= A@a iff a[

20 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 5.4.Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[0]] def

= 1 [[a[T]]] def
= K(a) ◦ [[T]] [[T1 | T2]] def

= join ◦ ([[T1]] ⊗ [[T2]])

STL formulae into PGL formulae
[[0]] def

= 1 [[a[A]]] def
= K(a) ◦1 [[A]]

[[F]] def
= F [[A@a]] def

= K(a) �1 [[A]]
[[A⇒ B]] def

= [[A]] ⇒ [[B]] [[A | B]] def
= [[A]] | [[B]]

[[A . B]] def
= ([[A]] | id1) �1 [[B]]

we remark that:(i) the parallel composition of STL is the structural commuta-
tive separation of PGL;(ii) tree labels can be represented by the corresponding
controls of the place graph;(iii) location and composition adjuncts of STL are

BiLog: Spatial Logics for Bigraphs 21

it is easy to see that the encodings [[]] and ([]) are one the inverse of the other,
hence they give a bijection from trees to prime ground place graphs, fundamental
in the proof of the following theorem.

Theorem 2 (Encoding STL). For each tree T and formula A of STL:

T |= A if and only if [[T]] |= [[A]] .

Proof. The theorem is proved by structural induction on STL formulae. The
transparency predicate is not considered here, as it is verified on every control.
The basic step deals with the constantsF and0. CaseF follows by definition.
For the case0, [[T]] |= [[0]] means [[T]] |= 1, that by definition is [[T]] ≡ 1 and
soT ≡ ([[[T]]])

22 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

case that for everyg : 0 → 1 such thatg |= [[A]] it holds join(g ⊗ id1) ◦
[[T]] |= [[B]], that is join(g ⊗ [[T]]) |= [[B]] by bifunctoriality property.
Since the encoding is a bijection, this is equivalent to say that for every tree
T′ such that [[T′]] |= [[A]] it holds join([[T′]] ⊗ [[T]]) |= [[B]], that is [[T′ |
T]] |=

BiLog: Spatial Logics for Bigraphs 23

Table 5.5.Additional Axioms for Link Graph Structural Congruence

Link Axioms:
a/a ≡ ida Link Identity
/a ◦ a/b ≡ /b Closing renaming
/a ◦ a ≡ idε Idle edge
b/(Y]a) ◦ (idY ⊗

a/X) ≡ b/Y]X Composing substitutions

Link Node Axiom:
α ◦ K~a ≡ Kα(~a) Renaming

andk = ar(K). The controlK~a represents a resource of kindK with named ports
~a. Any ports may be connected to other node ports via wiring compositions.

In this case, the structural congruence≡ is refined as outlined in Tab. 5.5
with obvious axioms for links, modellingα-conversion and extrusion of closed
names. We assume the transparency predicateτ verified for wiring constructors.

Fixed the transparency predicateτ for each control inK , the Link Graph
Logic LGL(K , τ) is BiLog

24 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

[W′]W for (W′ ⊗ idX′\Y) ◦ W and if~a = a1, . . . ,an and~b = b1, . . . ,bn, we write
~a ← ~b for a1 ← b1 ⊗ . . . ⊗ an ← bn, similarly for ~a ⇔ ~b. From the tensor
product it is possible to derive a product with sharing on~a. GivenG : X → Y
andG′ : X′ → Y′ with X ∩ X′ = ∅, we choose a list~b (with the same length as
~a) of fresh names. The composition with sharing~a is

G
~a
⊗ G′ def

= [~a ⇔ ~b](([~b← ~a] ◦ G) ⊗ G′).

In this case, the tensor product is well defined since all the common names~a in
W are renamed to fresh names, while the sharing is re-established afterwards by
linking the~a names with the~b names.

By extending this sharing to all names we define the parallel compositionG |
G′ as a total operation. However, such an operator does not behave ‘well’ with
respect to the composition, as shown in [19]. In addition a direct inclusion of a
corresponding connective in the logic would impact the satisfaction relation by
expanding the finite horizontal decompositions to the boundless possible name-
sharing decompositions. (This may be the main reason why logics describing
models with name closure and parallel composition are undecidable [11].) This
is due to the fact that the set of names shared by a parallel composition is not
known in advance, and therefore parallel composition can only be defined by
using an existential quantification over the entire set of shared names.

Names can be internalised and effectively made private to a bigraph by the
closure operator/a. The effect of composition with/a is to add a new edge with
no public name, and therefore to makea to 8 9.963 Tf 5

26 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 5.6.Spatial graph Terms (with local names) and congruence

G,G′::= nil empty graph
a(x, y) single edge graph labelled a∈ Λ connecting the nodes x, y
G | G′ composing the graphs G,G′, with sharing of nodes
(νx)G the node x is local in G

G | nil ≡ G neutral element
G | G′ ≡ G′ | G commutativity
(G | G′) | G′′ ≡ G | (G′ | G′′) associativity
y < f n(G) implies (νx)G ≡ (νy)G{x← y} renaming
(νx)nil ≡ nil extrusion Zero
x < f n(G) implies G | (νx)G′ ≡ (νx)(G | G′) extrusion composition
x , y, z implies (νx)a(y, z) ≡ a(y

BiLog: Spatial Logics for Bigraphs 27

Table 5.7.Propositional Spatial Graph Logic (SGL)

ϕ, ψ ::= F false a(x, y) an edge from x to y
nil empty graph ϕ | ψ composition
ϕ⇒ ψ implication

G |= F iff never
G |= nil iff G ≡ nil
G |= ϕ⇒ ψ iff G |= ϕ implies G |= ψ
G |= a(x, y) iff G ≡ a(x, y)
G |= ϕ | ψ iff there exists G1,G2 s.t.

G ≡ G1 | G2 and G1 |= ϕ and G2 |= ψ

Table 5.8.Encoding Propositional SGL in LGL over ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[nil]] X

def
= X

[[a(x, y)]] X
def
= K(a)x,y ⊗ X \ {x, y}

[[(νx)G]] X
def
= ((/x ⊗ idX\{x}) ◦ [[G]] {x}∪X)) ⊗ ({x} ∩ X)

[[G | G′]] X
def
= [[G]] X

~x
⊗ [[G′]] X

SGL formulae into LGL formulae
[[nil]] X

def
= X [[a(x, y)]] X

def
= K(a)x,y ⊗ (X \ {x, y})

[[F]] X
def
= F [[ϕ⇒ ψ]] X

def
= [[ϕ]] X ⇒ [[ψ]] X

[[ϕ | ψ]] X
def
= [[ϕ]] X

~x
⊗ [[ψ]] X

typeε → 〈1,X〉. The results in [19] say that a bigraph without nested nodes and
〈1,X〉 as outerface have the following normal form (whereY ⊆ X):

G ::= (/Z | id〈1,X〉) ◦ (X | M0 | . . . | Mk−1)

M ::= Kx,y(a) ◦ 1

The inverse encoding is based on such a normal form:

([(/Z | id〈1,X〉) ◦ (X | M0 | . . . | Mk−1)]) def
= (νZ) (nil | ([M0]) | . . . | ([Mk−1]))

([Kx,y(a) ◦ 1]) def
= a(x, y)

Notice that the extrusion properties of local names correspond to node and link
axioms. The encodings [[]] and ([]) provide a bijection, up to congruence, be-
tween graphs of SGL and ground link graphs with outer faceX and built by
controls of arity 2. �

28 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

The previous lemma is fundamental in proving that the soundness of the
encoding forSGLin BiLog, stated in the following theorem.

Theorem 3 (Encoding SGL). For every graph G, every finite set X containing
fn(G), and every formulaϕ of the propositional fragment of SGL:

G |= ϕ if and only if [[G]] X |= [[ϕ]] X.

Proof. By induction on formulae of SGL. The transparency predicate is not con-

BiLog: Spatial Logics for Bigraphs 29

Table 5.9.Additional axioms for Bigraph Structural Congruence

Symmetric Category Axioms:
γI ,ε ≡ idI Symmetry Id
γI

30 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

ity and connectivity. To testify this, §5.7 shows how recently proposed Context
Logic for Trees (CTL) [4] can be encoded into bigraphs. The idea of the encod-
ing is to extend the encoding of STL with (single-hole) contexts and identified
nodes. First, §5.6 gives some details on the transparency predicate.

5.6 Transparency on bigraphs
In the logical framework we gave the minimal restrictions on the transparency
predicate to prove our results. Here we show a way to define a transparency
predicate. The most natural way is to make the transparent terms a sub-category
of the more general category of terms. This essentially means to impose the
product and the composition of two transparent terms to be transparent.

Thus transparency on all terms is derived from a transparency policyτΘ()
defined only on the constructors. Note that the transparency definition depends
also on the congruence. In the following definition we show how to derive the
transparency from a transparency policy.

Definition 2 (Transparency). Given the monoid of interfaces(M,⊗, ε), the set
of constructorsΘ, the congruence≡ and a transparency policy predicateτΘ

defined on the constructors inΘ we define the transparency on terms as follows:

G ≡ idI

τ(G)
∃I .G : ε → I

τ(G)
G ≡ Ω τΘ(Ω)

τ(G)
G ≡ G1 ⊗ G2 τ(G1) τ(G2)

τ(G)
G ≡ G1 ◦ G2 τ(G1) τ(G2)

τ(G)

Next lemma proves that the condition we posed on the transparency predicate
holds for this particular definition.

Lemma 5 (Transparency properties). If G is ground or G is an identity then
τ(G) is verified. Moreover, if G≡ G′ thenτ(G) is equivalent toτ(G′).

Proof. The former statement is verified by definition. The latter is proved by
induction on the derivations. �

We assume every bigraphical constructor, that is not a control, to be trans-
parent and the transparency policy to be defined only on the controls. The trans-
parency the policy can be defined. for instance, for security reasons.

5.7 Encoding CTL
Paper [4] presents a spatial context logic to describe programs manipulating a
tree structured memory. The model of the logic is the set of unordered labelled
treesT andlinear contexts C, which are trees with a unique hole. Every node has
a name, so to identify memory locations. From the model, the logic is dubbed
Context Tree Logic, CTL in the following. Given a denumerable set of labels
and a denumerable set of identifiers, trees and contexts are defined in Tab. 5.10:

32 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 5.11.Context Tree Logic (CTL)

P,P′ ::= false
0 empty tree formula
K(P) context application
K / P context application adjunct
P⇒ P′ implication

K,K′::= false
− identity context formula
ax[K] node context formula
P . P′ context application adjunct
P | K parallel context formula
K ⇒ K′ implication

Table 5.12.Semantics for CTL

T |=T false iff never
T |=T 0 iff T ≡ 0
T |=T K(P) iff there exist C,T′ s.t. C(T′) well-formed, and T ≡ C(T′)

and C |=K K and T′ |=T P
T |=T K / P iff for every C: C |=K K and C(T) well-formed

implies C(T) |=T P
T |=T P⇒ P′ iff T |=T P implies T |=T P′

C |=K false iff never
C |=K − iff C ≡ −
C |=K ax[K] iff there exists C′ s.t. ax[C′] well-formed, and

C ≡ ax[C′] and C′ |=K K
C |=K P . P′ iff for every T: T |=T P and C(T) well-formed

implies C(T) |=T P′

C |=K P | K iff there exist C′,T s.t. T | C′ well-formed, and
C ≡ T | C′ and T |=T P and C′ |=K K

C |=K K ⇒ K′ iff C |=K K implies T |=T K′

BiLog: Spatial Logics for Bigraphs 33

formula id〈m, 〉 to represent identities on places by constraining the place part of
the interface to be fixed and leaving the name part to be free:

id〈m, 〉 def
= idm ⊗ (id ∧ ¬(id∃⊗1)).

It is easy to see thatG |= id〈m,−〉 means that there exits a set of namesX such that
G ≡ idm ⊗ idX. By using such an identity formula we define the corresponding
typed composition◦〈m, 〉 and the typed adjuncts�〈m, 〉, (〈m, 〉:

A ◦〈m, 〉 B def
= A ◦ id〈m, 〉 ◦ B

A �〈m, 〉 B def
= (id〈m, 〉 ◦ A) � B

A (〈m, 〉 B def
= (A ◦ id〈m, 〉) � B

We then define the operator∗ for the parallel composition with separation oper-
ator∗ as both a term constructor and a logical connective:

D ∗ E def
= [join](D ⊗ E) for D andE prime bigraphs

A ∗ B def
= (join ⊗ id〈0, 〉) ◦ (A→〈1, 〉 ⊗ B→〈1, 〉) for A andB formulae

The operator∗ enables the encoding of trees and contexts to bigraphs. In
particular, we consider a signature with controls of arity 1 and we define the
transparency predicate to be verified on every control. Moreover we assume a
bijective function from tags to controls

ax 7−→ K(a)x.

The details are outlined in Tab. 5.13. The encodings of trees turn out to beground
prime discrete bigraphs: bigraphs with open links and type 0→ 〈1,X〉. The
result in [19] says that the normal form, up to permutations, for ground prime
discrete bigraphs is:

g = (joink ⊗ idX) ◦ (M1 ⊗ . . . ⊗ Mk),

whereMi are discrete ground molecules of the form

M = (K(a)x ⊗ idY)g.

We can now define the reverse encoding ([]) of [[]], from ground prime discrete
bigraphs to trees, involving such a normal form:

([join0]) def
= 0

([(K(a)x ⊗ idY) ◦ g]) def
= ax[([g])]

([(joink ⊗ idY) ◦ (M1 ⊗ . . . ⊗ Mk)]) def
= ([M1]) ∗ . . . ∗ ([Mk])

Moreover, the encodings of linear contexts turn out to beunary discrete bi-
graphs G: bigraphs with open links and type〈1,X〉 → 〈1,Y〉. Again, the result in
[19] implies that the normal form, up to permutations, for unary discrete bigraphs

34 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 5.13.Encoding CTL in BiLog over prime discrete ground bigraphs

Trees into prime ground Contexts into unary discrete bigraphs
discrete bigraphs [[−]]C

def
= id1

[[0]] def
= 1 [[ax[C]]] C

def
= (K(a)x ⊗ f n(C)) ◦ [[C]]C

[[ax[T]]] def
= (K(a)x ⊗ f n(T)) ◦ [[T]] [[T | C]]C

def
= [[T]] ∗ [[C]]C

[[T1 | T2]] def
= [[T1]] ∗ [[T2]] [[C | T]]C

def
= [[C]]C ∗ [[T]]

TL formulae into PGL formulae CTL formulae into PGL formulae
[[false]] P

def
= F [[false]] K

def
= F

[[0]] P
def
= 1 [[−]] K

def
= id1

[[K(P)]] P
def
= [[K]] K ◦〈1, 〉 [[P]] P [[P . P′]] K

def
= [[P]] P (〈1, 〉 [[P′]] P

[[K / P]] P
def
= [[K]] K �〈1, 〉 [[P]] P [[ax[K]]] K

def
= ((K(a)x) ⊗ id〈0, 〉) ◦ [[K]] K

[[P⇒ P′]] P
def
= [[P]] P⇒ [[P′]] P [[P | K]] K

def
= [[P]] P ∗ [[K]] K

[[K ⇒ K′]] K
def
= [[K]] K ⇒ [[K′]] K

is:

G = (joink ⊗ idY) ◦ (R⊗ M1 ⊗ . . . ⊗ Mk−1)

whereMi are discrete ground gro

BiLog: Spatial Logics for Bigraphs 35

generalisation of Context Tree Logic to contexts with several holes and regions.
On the other hand, since STL is more general than separation logic, cf. [4], and it
is used to characterise programs that manipulate tree structured memory model,
BiLog can express separation logic as well.

6 Towards dynamics

The main aim of this paper is to introduce BiLog and its expressive power in
describing static structures. BiLog is however able to deal with the dynamic be-
haviour of the model, as well. Essentially, this happens thanks to the contextual
nature of the logic, suitable to characterise structural parametric reaction rules,
expressing dynamics.

A main feature of a distributed system is mobility, or dynamics in general.
In dealing with communicating and nomadic processes, the interest is not only

36 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

According to the formulation of the reduction given above, we obtain

g |= ♦A iff there exist(R,R′) ∈ S, idY, D active, and d ground; such that

g ≡ D ◦ (R⊗ idY) ◦ d , g′ ≡ D ◦ (R′ ⊗ idY) ◦ d and g′ |= A. (3)

One may wonder whether the modality♦ is the only way to express a temporal
evolution in BiLog. It turns out that BiLog has a built in notion of dynamics. In
several cases, BiLog itself is sufficient to express the computation. One of them
is the encoding of CCS, shown in the following.

We focus on the fairly small fragment of CCS considered in [2], consisting
of prefix and parallel composition only;P,Q will range overprocesses, anda,a
over actions, chosen in the enumerable setActs. The syntax of the calculus is
defined by the following grammar.

P ::== 0 | λ.P | P | P
λ ::== a | a

Note that the operatorν is not included, hence all the names appearing in a pro-
cess are free, this fact yields the encoding to produce bigraphs with open links.

BiLog: Spatial Logics for Bigraphs 37

a finite set of names, viz., the outer names of the term that can fill the context. In
particular, the controlsact andcoact are declared to bepassive, i.e., no reaction
can occur inside them.

As already said, we consider bigraphs built on the controlsacta, coacta. The
encoding [[]]X is parameterised by afinite subsetX ⊆ Acts. In particular, the
encoding yields ground bigraphs with outer face〈1,X〉 and open links. The
translation for processes is formally defined as

[[0]] X
def
= 1 ⊗ X

[[a.P]] X
def
= (acta

a
⊗ idX) ◦ [[P]] X

[[ā.P]] X
def
= (coacta

a
⊗ idX) ◦ [[P]] X

[[P | Q]] X
def
= join ◦ ([[P]] X

X
⊗ [[Q]] X)

Wherea ∈ X, and, with abuse of notation, the sharing/separation operator
X
⊗

stands for
~a
⊗ where~a is any array of all the elements inX. Note, in particular,

that the sharing tensor “
a
⊗ idX” allows the process filling the hole inacta

(andcoacta) to perform other actionsa. Moreoverjoin makes the tensor to be
commutative in the encoding of parallel, in fact there is a straight correspondence
between the parallel operators in the two calculi, as [[P | Q]] X corresponds to
[[P]] X | [[Q]] X, that is the parallel operator on bigraphs. The result stated in
Lemma 7 says that the encoding is bijective on prime ground bigraphs with open
links. First we need a general result on bigraphs and parallel composition.

Lemma 6 (Adding Names).

38 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

2. For every couple of processes P,Q and for every finite subset X⊆ Acts in-
cluding the free names of P,Q it holds: P≡ Q if and only if[[P]] X ≡ [[Q]] X.

Proof. Prove point (1) by showing that every prime ground bigraph with outer-
face〈1,X〉 has at least one pre-image for the translation [[·]] X. Proceed by induc-
tion on the number of nodes in the bigraphs. First we recall the connected normal
form for bigraphs. The paper [19] proves that every prime ground bigraphG with
outerface〈1,X〉 and open links has the following Connected Normal Form:

G ::= X | F
F ::= M1 | . . . | Mk

M ::= (Ka | idY) ◦ F (for Ka ∈ {acta, coacta})

The base of induction is the bigraphX, and clearly [[0]] X = X. For the
inductive step, consider a bigraphG with at least one node. This meansG =

X | ((Ka | idY) ◦ F) | G′. Without losing generality, assumeKa = acta, so by
Proposition 6:

G = (acta | idX) ◦ (X | F) | (

BiLog: Spatial Logics for Bigraphs 39

In [22] it is proved that the translation preserves and reflects the reactions,
that is:P —. P′ if and only if [[P]] —. [[P′]].

The reaction rules are defined as

(acta | idY1) | (coacta | idY2) —. a | id〈1,Y1〉 | id〈1,Y2〉.

This can be mildly sugared to obtain the rule introduced in (5)
Moreover, the active contexts introduced in (6) can be rephrased as

g | 2

whereg is a single-rooted ground bigraph with open links. It is easy to conclude
that the most general context ready to react has the form

20 | acta21 | coacta22 |—. 20 | 21 | 22

the hole20 has to be filled in by single-rooted ground bigraphs with open links,
whereas the holes21 and22 by ground bigraphs. Note that such a reduction is
compositional with the parallel operator. In case of the CCS translation, the a
reacting bigraphs are further characterised as shown in Lemma 8. In particular,
the lemma shows that every reacting [[P]] X can be decomposed into a redex and
a bigraph with a well defined structure, that is composed with a reactum to obtain
the result of the reaction. The Redex and the Reactum are formally outlined in
Tab. 6.1. They will be the key point to express the next step modality in BiLog.
Note thaty1 andy2 of the definition in Tab. 6.1 have to be disjoint withX, Y1 and
Y2. They are useful for join the action with the corresponding coaction.

Table 6.1.Reacting Contexts for CCS

Bigraphs:
Redexy1,y2,Y1,Y2

a
def
= W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a)

40 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

2. There exist the bigraphs G1,G2,G3 : ε → 〈1,X〉 and the name a∈ X, such
that

[[P]] X ≡ ((acta | idX) ◦ G1) | ((coacta | idX) ◦ G2) | G3

and G≡ G1 | G2 | G3.

3. There exist the actions a∈ X and y1, y2 < X, and two mutually disjoint sub-
sets Y1,Y2 ⊆ Acts with the same cardinality as X, but disjoint with X, y1, y2,
and there exist the bigraphs H1 : ε → 〈1,Y1〉, H2 : ε → 〈1,Y2〉, and
H3 : ε → 〈1,X〉 with open links, such that

[[P]] X ≡ Redexy1,y2,Y1,Y2
a ◦ (H1 ⊗ H2 ⊗ H3)

and

G ≡ ReactY1,Y2
a ◦ (H1 ⊗ H2 ⊗ H3),

where Redexy1,y2,Y1,Y2
a , ReactY1,Y

BiLog: Spatial Logics for Bigraphs 41

W links y1 andy2 with a. By bifunctoriality property, [[P]] X is rewritten as

W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗ id1) ◦

◦ acta ⊗ idY1 ⊗ ((y2← a) ⊗ id1) ◦ coacta ⊗ idY2 ⊗ G3 } ◦

◦ { ((Y1← X) ⊗ id1) ◦ G1 ⊗ ((Y2← X) ⊗ id1) ◦ G2 },

and, again by bifunctoriality property, as

W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗ id1) ◦

◦ acta ⊗ idY1 ⊗ ((y2← a) ⊗ id1) ◦ coacta ⊗ idY2 ⊗ id〈1,X〉 } ◦

◦ { ((Y1← X) ⊗ id1) ◦ G1 ⊗ ((Y2← X) ⊗ id1) ◦ G2 ⊗ G3 }.

Point (3) follows by definingH′i = ((Yi ← X) ⊗ id1) ◦ Gi for i = 1,2, and
H3 = G3 . Note that the three bigraphsGi andHi have open links as so does
[[P]] X. Finally, we point (3) implies point (2), since the previous reasoning can
be inverted. �

By following the ideas of [22] it is easy to demonstrate that there is an ex-
act match between reaction relations generated in CCS and in the bigraphical
system, as stated in the following lemma.

Proposition 3 (Matching Reactions).For every finite set of names X it holds

P→ Q if and only if [[P]] X —. [[Q]] X

for every CCS process P and Q such that Act(P),Act(Q) ⊆ X.

Proof. For the forward direction, proceed by induction on the number of the
rules applied in the derivation forP → Q in CCS. The base of the induction is
the only rule without premixes, that meansP is a.P1 | a.P2 andQ is P1 | P2. The
translation is sound as regards this rule, since the reactive system says

((acta | idX) ◦ [[P1]] X) | ((coacta | idX) ◦ [[P2]]

42 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

Table 6.2.Semantics of formulaeLspat in CCS

P |=spat 0 if P ≡ 0
P |=spat ¬A if not P |=spat A
P |=spat A∧ B if P |=spat A and P |=spat B
P |=spat A | B if there exist R,Q, s.t. P ≡ R | Q, R |=spat A and Q |= Bspat

P |=spat A . B if for every Q, Q |=spat A implies P | Q |=spat B
P |=spat ♦A if there exist P′ s.t. P —. P′ and P′ |=spat A

Pi such that [[Pi]] corresponds toGi , hence [[P]] ≡ [[a.P1 | a.P2 | P3]] and
[[Q]] ≡ [[P1 | P2 | P3]]. Again, Lemma 7 says thatP ≡ a.P1 | a.P2 | P3 and
Q ≡ P1 | P2 | P3, thenR→ Q. �

It can be proved an even stronger result: if a CCS translation reacts to a
bigraph, then such a bigraph is a CCS translation as well, as formalised in the
lemma below.

Proposition 4 (Conservative Reaction).For every CCS process P such that
[[P]] X —. G, there exists a CCS process Q such that[[Q]] X = G and P→ Q.

Proof. Assume that [[P]] X —. G, then the point (2) of Lemma 8 says that
G has typeε → 〈1,X〉 and open links, since so does [[P]] X. This means, by
Lemma 7, that there exists a process Q such that [[Q]] X ≡ G. ConcludeP→ Q
by Lemma 3. �

The work [2] introduces the spatial logicLspat suitable to describe the struc-
ture and the behaviour of CCS processes. The language of the logic is

A, B ::= 0 | A∧ B | A | B | ¬A | A . B | ♦A.

It includes the basic spatial operators: the void constant 0, the composition op-
erator|, and its adjunct operator.. It presents also a temporal operator, the next
step modality♦, to capture the dynamics of the processes. The paper [2] defines
a semantics toLspat in term of CCS processes, as outlined in Tab. 6.2. In partic-
ular, the parallel connective describes processes that are produced by the parallel
between two processes that satisfies the corresponding formula. A process satis-
fies the formulaA / B if it satisfied the formulaB whenever put in parallel with
a process satisfyingA. Finally the next step♦A is satisfied by a process that can
evolve into a process satisfyingA.

The logicLspat can be encoded in a suitable instantiation of BiLog, with-
out using the modality defined in (3). It is sufficient to instantiate the logic
BiLog(M,⊗, ε,Θ,≡, τ) to obtain the bigraphical encoding of CCS. We define
Θ to be composed by the standard constructor for a bigraphical system with
K = {act, coact}, and the transparency predicateτ to be always true. The fact

BiLog: Spatial Logics for Bigraphs 43

thatτ is verified on every term is determinant for the soundness of the encoding
we are describing.

Rephrasing Lemma 8 informally, we say that the set of reactions in CCS
are determined by couples of the form (Redexa,Reactuma) for everya ∈

44 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

the power of the somewhere operator. We will show that a bigraph satisfies
[[P]] X |= [[A . B]] X if it satisfies [[B]] X whenever connected in parallel with any
encoding of a CCS process satisfying [[A]] X.

On the other side, in the encoding for the temporal modality♦ the supporting
formulaTriple is satisfied by processes that are the composition of three single-
rooted ground bigraphs whose outerfaces have the same number of names asX.
We will show that a process satisfies [[♦A]] X if and only if it is the combination
of a particular redex with a bigraph that satisfies the requirement of Lemma 8,
and moreover that the corresponding reactum satisfies [[A]] X.

The main result of this section is formalised in Proposition 5. It expresses
the semantical equivalence betweenLspat and its encoding in BiLog. Note in
particular the requirement for a finite set of actions performable by the CCS
processes. Such a limitation is not due to the presence of the next step operator.
Indeed, looking carefully at the proof, one can see that the induction step for
the temporal operator still holds in the case of a not-finite set of actions. On the
contrary, the limitation is due to the adjoint operator.. In fact we need to bound
the number of names that is shared between the processes. This happens because
of the different choice for the logical product operator in BiLog. On one hand,
the spatial logic had the parallel operator built in. This means that the logic does

46 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

[[A]] X, and this meansQ |=spat A by induction hypothesis. We conclude that
[[P]] X |= [[♦A]] X is equivalent toP→ Q with Q |=spat A, namelyP |=spat ♦A. �

7 Conclusions and future work

This paper moves a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope
uniformly with all the models bigraphs have been proved useful for, as of today
these includeλ-calculus [21], Petri-nets [20], CCS [22], pi-calculus [16] and

BiLog: Spatial Logics for Bigraphs 47

preserves decidability in spatial logics [11].
We have not addressed a logic for tree with hidden names. As a matter of fact,

we have such a logic. More precisely we can encode abstract trees into bigraphs
with an unique controlamb with arity one. The name assigned to this control
will actually be the name of the ambient. The extrusion properties and renaming
of abstract trees have their correspondence in bigraphical terms by means of
substitution and closure properties combined with properties of identity.

BiLog can express properties of trees with names. At the logical level we
may encode operators of tree logic with hidden names as follows:

©a def
= ((a← a) ⊗ id) ◦ T

Cx.A def
= Nx. (/x ⊗ id) ◦ A

a® A def
= (¬©a∧ A) ∨ (/a ⊗ id) ◦ A

Hx.A def
=x
Hfi:

48 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

[3] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a spatial logic for trees. In
Proc. of ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI),
pages 62 – 73. ACM Press, 2003.

[4] C. Calcagno, P. Gardner, and U. Zarfaty. A context logic for tree update. InProc. of ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 271–
282. ACM Press, 2005.

[5] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. InProc. of In-
ternational Colloquium on Automata, Languages and Programming (ICALP), volume 2380 of
LNCS, pages 597 – 610. Springer-Verlag, 2002.

BiLog: Spatial Logics for Bigraphs 49

[22] R. Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614, University of Cambridge,
January 2005.

[23] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. InProc. of International Workshop on Computer Science Logic (CSL),
volume 2142 ofLNCS, pages 1–19. Springer-Verlag, 2001.

[24] A. M. Pitts. Nominal logic: a first order theory of names and binding. InProc. of International
Symposium on Theoretical Aspects of Computer Software (TACS), volume 2215 ofLNCS, pages
219–242. Springer-Verlag, 2001.

[25] D. Sangiorgi. Extensionality and intensionality of the ambient logic. InProc. of ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 4–
13. ACM Press, 2001.

