


formula �

P

is de�ned with the property that for any formula F , P j= F if and only

if �

P

! F is a valid formula. Thus deciding whether or not a process satis�es a

property is reduced to testing for the validity of a formula in the underlying modal

logic.

Much of this work is carried out within the framework of pure process algebras,

where processes are determined by their ability to perform atomic or uninterpreted

actions and the modal formula describe certain aspects of their behaviour vis. a vis.

these actions. Thus satisfying the modal property [a](hbitt_ [c]�) means that every

time a process performs the atomic action a either it can subsequently perform the

action b or it can not perform the action c. The aim of this paper is to extend this

work to what we call message passing process algebras, i.e. process descriptions in

which these actions have a certain interpretation; the reception and transmission

of data along conceptual channels. Thus, for example,

P (= c?x:if x = 0 then c!x:P else d!(x+ 1):P

describes a process which can input a value on the channel c and output its successor

on the channel d unless it is zero in which case it is output on the original channel.

Properties of such processes depend, of course, on properties of the underlying

message{space and thus proof systems for inferring such properties will also have to

derive theorems valid in this message{space. Here we take the approach advocated

in [Hen91]; we factor out as much as possible all this auxiliary reasoning. In the

extended modal logic we can express assertions of the underlying message{space but

in the accompanying proof systems theorems involving such assertions are obtained

for \free"; i.e. we assume the existence of an oracle which will determine the truth

or otherwise of these assertions. In reality, in any implementation, we would call on

an auxiliary proof system to establish such assertions. In this paper we will allow

any �rst order formula as an assertion about the underlying message{space.

Nevertheless we do have to generalise the modal operators hai and [a] to the

setting of message{passing on channels. For output actions this generalisation

is straightforward. For each channel name c and data{variable x we have two

modalities hc!xi and [c!x]. Intuitively a process P satis�es hc!xiF if it is possible

for it to output on the channel c a message v and in doing so evolve to a state

P

0

such that P

0

satis�es the formula F [v=x]; the interpretation of [c!x] is similar.

However input actions are somewhat more complicated and the form of the modal

logic depends on the operational semantics of the process language. There are two

natural generalisations of the standard operational semantics of pure processes,

called early and late in [HL92, MPW92]. Here we use the late operational semantics

which expresses the ability of processes to perform abstract actions of the form

P

c?

�! (x)A where (x)A is an abstraction which describes what will happen when a

value is received on the channel c. Thus we have two further simple modalities hc?i

and [c?] associated with input actions but now these must be followed by formulae

expressing properties of abstractions; these take the form of quanti�ed assertions,

of the form 9xF and 8xF . The end result is a very powerful language for describing

properties of message{passing systems. For example

[c?]8x[d!y](y = x+ 1)
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assume that substitutions, mappings fromX to expressions, act in the standard way

on expressions; we use e[�] to denote the expression which results from applying

the substitution � to the expression e. An evaluation � is a particular type of

substitution; it maps variables to values and we assume that for every expression

e; e[�] always evaluates to a value. Moreover we assume that this evaluation

depends only on the variables occurring in e; if we let fv(e) to denote the variables

which occur in e then e[�] = e[�

0

] whenever � and �

0

agree on fv(e). If e contains

no variables then e[�] is independent of � and we denote this value by [[e]]. In a

similar manner we assume a language for boolean expressions, ranged over by b,

and substitutions and evaluations act on boolean expressions in a similar manner.

The syntax of process expression is de�ned by the following BN-form:

T ::= 0 j �:T j c?x:T j c!e:T j T + T

0

j if b then T else T

0

j T jT

0

j TnL j T [f ] j C(e

1

; : : : ; e

n

)

We will �rst briey explain these process constructions. Later a formal semantics

will be given. The term 0 represents a process which does nothing while �:P will

do an internal action � and then behave like the process P . The process c?x:T

will receive a value v on channel c and then behaves like the process T [v=x], where

we use the standard notation T [v=x] to describe the substitution of v for all free

occurrences of the variable x in T . Thus in c?x:T the pre�x c?x is a binding operator

for the value variable x and this leads to the standard de�nition of free and bound

occurrences of variables in terms. The application of a substitution or evaluation,

de�ned above on value expressions, is generalised to terms; thus for example T [�]

denotes the result of substituting in T all free occurrences of x by �(x). We will

also take for granted the de�nition of �-conversion, �

�

, on terms. Returning to

our informal explanation of the language c!e:P will send the value of the expression

e on channel c and subsequently behave like P . The operator + represent choice:

P +P

0

will either proceed like P or P

0

. The process Por P0�Tsimilar BN-fo-15999.7TJ
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terms, i.e. terms which contain no occurrences of free variables; we use P;Q; : : :

to range over these processes. Such an operational semantics is given in Figure

1. It presupposes that





F ::= B j F

1

_ F

2

j F

1

^ F

2

j h� iF j [� ]F j

hc!xiF j [c!x]F j hc?iG j [c?]G

G ::= 9xF j



and universal quanti�cation over transitions. That is, in order to satisfy a formula

h�iF , a process must possess some �{transition leading to a con�guration (a pro-

cess or an abstraction) satisfying F . Dually, for a process to satisfy a formula [�]F ,

any �{transition must lead to con�gurations satisfying F .

The logic characterizes the (late) bisimulation equivalence between message

passing processes as the following theorem claims.

Theorem 2.2 (Modal characterization)P � Q if and only if for all (closed)

modal formula F , P j= F , Q j= F .

Proof: ): Suppose P � Q and P j= F , we can show that Q j= F by induction on

the structure of F . It is easy when F has the forms B;F

1

^F

2

; F

1

_F

2

; h� iF

0

; [� ]F

0

.

If F is hc!xiF

0

, then there exists P

c!

�! (v; P

0

) such that P

0

j= F [v=x]. Because

P � Q, so Q

c!

�! (v;Q

0

) for some Q

0

with P

0

� Q

0

, and by induction hypothesis

Q

0

j= F [v=x]. Thus Q j= hc!xiF

0

. Similarly we can prove the case when F is [c!x]F

0

.

If F is hc?iG, then there exists P

c?

�! (x)T such that (x)T j= G. Because P � Q, so

Q

c?

�! (y)U for some (y



3 Proving Properties of Message Passing Pro-

cesses

In this section, we will look at how to reason about whether a process satis�es a

modal property. From the de�nition of the satisfaction relation j= it seems quite

natural to express whether P j= F holds as a �rst order formula R

P;F

, such that

[[R

P;F

]] = tt just in case P j= F holds. This idea is attractive because if we can do

this for any process P and modal formula F , and assume that we have a �rst order

theory about the domain V at our disposal, then the problem of whether P j= F

holds is reduced to the problem of whether we can establish R

P;F

in the �rst order

theory. We will call such R

P;F

the characteristic formula of P satisfying F and

write it as P satF in the rest of the paper.

Now let us see how to construct P satF for a given process P and formula

F . Naturally the construction should be done inductively on the structure of F .

Take the case F

1

^ F

2

as an example; assuming we have constructed P satF

1

and

P satF

2

, according to the de�nition of j=, it is reasonable to de�ne P satF

1

^ F

2

as P satF

1

^P satF

2

. Take

P sat h
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sat F we have rdyng constructed
P

sat F for P

P

. This construction on the



Act

�:T

tt;�

�! T

c!e:T

tt;c!

�! (e; T ) c?x:T

tt;c?

�! (x)T

Sum

T

b;�

�! A

T + U

b;�

�! A

U

b;�

�! A

T + U

b;�

�! A

Cond

T

b;�

�! A

if b

0

then T else U

b^b

0

;�

�! A

U

b;�

�! A

if b

0

then T else U

b^:b

0

;�



Now look at the third Par rule, it is possible that the bound variable x in (x)T

0

also

appears free in U . Obviously these two appearances of x should not be confused.

In order to avoid such confusion, we assume a function new which takes a set of

variables X as argument and produce a new variable which is not in X, and use

new to change the bound variable.

The �rst lemma shows that this operational semantics for open terms is in fact

a generalization of the operational semantics for processes in Figure 1.

Lemma 3.1 For any process P , P

�

�! A if and only if P

b;�

�! A for some (closed)

b with [[b]] = tt.

Proof: The statement of the lemma assumes that a closed value expression e is

identi�ed with its value [[e]]. The proof consists of two routine inductions, one on

the rules in Figure 1, and the other on those of Figure 4. 2

The next result states that in some sense the symbolic operational semantics is

preserved under substitutions.

Lemma 3.2 For any term T and substitution �, T [�]

b

0

;�

�! A

0

if and only if T

b;�

�! A

for some b;A such that b

0

� b[�]; A

0

�

�

A[�].

Proof:





The case hc!xiF :

[[P sat hc!xiF ]] = tt

, [[

W

P

b;c!

�!(e;P

0

)

b ^ P

0

satF [e=x]]] = tt def. of sat

, for some e; P

0

; P

b;c!

�! (e; P

0

) with [[b]] = tt

and [[P

0

satF [e=x]]] = tt

, for some e; P

0

; P

c!

�! ([[e]]; P

0

) and [[P

0

satF [[[e]]=x]]] = tt Lemma 3.1

, for some e; P

0

; P

c!

�! ([[e]]; P

0

) with P

0

j= F [[[e]]=x] ind. hyp.

, P j= hc!xiF def. of j=

The case [c?]G:

[[P sat [c?]G]] = tt

, [[

V

P

b;c!

�!(y)T

b! (y)T satF ]] = tt def. of sat

, whenever P

b;c?

�! (y)T with [[b]] = tt

then [[(y)T satG]] = tt

, whenever P

c?

�! (y)T then [[(y)T satG]] = tt Lemma 3.1

, whenever P

c?

�! (y)T then (y)T j= G ind. hyp.

, P j= [c?]G def. of j=

The case 8xF :

[[(y)T sat8xF ]] = tt

, [[8zT [z=y] satF [z=x]]] = tt def. of sat

, for all v 2 V; [[T [v=y]satF [v=x]]] = tt

, for all v 2 V; T [v=y] j= F [v=x] ind. hyp.

, (y)T j= 8xF def. of j=

2

Proposition 3.4 For any substitution �, the following logical equivalences hold:

(T satF )[�] � T [�] satF [�]

((y)T satG)[�] � ((y)T )[�] satG[�]

Proof: By induction on the stucture of F , using Lemma 3.2. We give four example

cases.
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in the process and formulae.

((y)T sat9xF )[�]

� (9zT [z=y] satF [z=x])[�] def. of sat

� 9z((T [z=y] satF [z=x])[�])

� 9z(T [z=y][�] satF [z=x][�]) ind. hyp.

� 9z(T [�][z=y] satF [�][z=x])

� (y)(T [�]) sat9x(F [�]) def. of sat

� ((y)T )[�] sat(9xF )[�]

2

Now we can prove the main result about characteristic formulae:

Theorem 3.5 (Characteristic formulae)For any process term T and formula F ,

T satF characterizes the satisfaction relation in the sense that for any evaluation

�

[[(T satF )[�]]] = tt , T [�] j= F [�]

Proof: Follows directly from the above two results.

2

Note that P [�



Id

B ` T :B

Cut

B

1

` T :F : : : : : :B

n

` T :F

W

1�i�n

B

i

` T :F

n � 0

Cons

B

1

` T :F

B

2

` T :F

B

2

) B

1

Ex

B ` T :F

9xB ` T :F

x does not occur free in T; F

_

B ` T :F

1

B ` T :F

1

_ F

2

B ` T :F

2

B ` T :F

1

_ F

2

^

B ` T :F

1

B ` T :F

2

B ` T :F

1

^ F

2

h�i

B ` T

0

:F

B ^ b ` T : h�iF

T

b;�

�! T

0

[� ]

B ^ b

1

` T

1

:F; : : :: : : ; B ^ b

n

` T

n

:F

B ` T : [� ]F

f(b

1

; T

1

); : : : ; (b

n

; T

n

)g = f(b; T

0

) j T

b;�

�! T

0

g

hc!i

B ` T

0

:F [e=x]

B ^ b ` T : hc!xiF

T

b;c!

�! (e; T

0

)

[c!]

B ^ b

1

` T

1

:F [e

1

=x]; : : : : : : ; B ^ b

n

` T

n

:F [e

n

=x]

B ` T : [c!x]F

where f(b

1

; T

1

; e

1

); : : : ; (b

n

; T

n

; e

n

)g = f(b; T

0

; e) j T

b;c!

�! (e; T

0

)g

hc?i

B ` (y)T

0

:G

B ^ b ` T : hc?iG

T

b;c?

�! (y)T

0

[c?]

B ^ b

1

` (y

1

)T

1

:G; : : :: : : ; B ^ b

n

` (y

n

)T

n

:G

B ` T : [c?]G

where f(b

1

; (y

1

)T

1

); : : : ; (b

n

; (y

n

)T

n

)g = f(b; T

0

) j T

b;c?

�! (y)T

0

g

8

B ` T :F

B ` (x)T : 8xF

x does not occur free in B

9

B ` T [e=x]:F [e=x]

B ` (x)T : 9xF

�

B ` T

0

:F

0

B ` T :F

T

0

�

�

T; F

0

�

�

F

Figure 6: The Proof Rules
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Theorem 4.1 (Soundness) If B ` T :F then, for any evaluation �, [[B[�]]] = tt

implies T [�] j= F [�].

Proof: First note that T [�] j= F [�], for any such substitution �, if and only if

[[(T satF )[�]]] = tt by Theorem 3.5. So it is su�cient to prove B ` T :F implies

B ) T satF . Therefore we only need to show that the rules of the proof system

preserve soundness in this sense. Each case follows from simple identities involving

) and the logical operators. For example the soundness of the [c?] rule relies on

the following facts:

1. B ^ b) F if and only if B ) (b! F ),

2. B )

V

i2S

F

i

if and only if B ) F

i

for all i 2 S.

To prove the soundness of 8 rule, we have to show that if B ) T satF and

x does not occur free in B then B ) (x)T sat8xF . Notice that (x)T sat8xF �

8xT satF . The result now follows since if x does not occur free in B then B )

T satF implies B ) 8xT satF .

To prove the soundness of 9 rule, we have to show that if B ) T [e=x] satF [e=x]

thenB ) (x)T sat9xF . Here T [e=x] satF [e=x] is logically equivalent to (T satF )[e=x]

which in turn implies 9xT satF .

2

The completeness of the system depends on the following result:

Lemma 4.2 For any term T and formula F , T satF ` T :F .

Proof: By induction on the size of F . We give four cases.

In the case hc!xiF , because of the construction of T sat hc!xiF , we have to show

that

W

T

b;c!

�!(e;T

0

)

b^ T

0

satF [e=v] ` T : hc!xiF . By the induction hypothesis, for all T

b;c!

�!

(e; T

0

), T

0

satF [e=x] ` T

0

:F [e=x], so b ^ T

0

satF [e=x] ` T : hc!xiF by rule hc!i. So

W

T

b;c!

�!(e;T

0

)

b ^ T

0

satF [e=x] ` T : hc!xiF by rule Cut.

When it is [c?]G, by the de�nition of T sat [c?]G, we have to show that

V

T

b;c?

�!(y)T

0

b ! (y)T

0

satG ` T : [c?]G. By the induction hypothesis, for all R such

that T

b

R

;c?

�! (y)R; (y)R satG ` (y)R:G, then (

V

T

b;c?

�!(y)T

0

b ! (y)T

0

satG) ^ b

R

`

(y)R:G by rule Cons because (

V

T

b;c?

�!(y)T

0

b! (y)T

0

satG)^b

R

) (y)R satG. Then

by rule [c?],

V

T

b;c?

�!(y)T

0

b! (y)T

0

satG ` T : [c?]G.

When it is 8xF , by the de�nition of (y)T sat8xF , we have to show that

8z:T [z=y]satF [z=x] ` (y)T :8xF . By the induction hypothesis,

T [z=y] satF [z=x] ` T [z=y]:F [z=x]

Because 8z:T [z=y] satF [z=x]) T [z=y] satF [z=x], by rule Cons we have

8z:T [z=y] satF [z=x] ` T [z=y]:F [z=x]
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Then apply rule 8 we have 8z:T [z=y] satF [z=x] ` (z)T [z=y]:8zF [



Theorem 4.6 Let T;U be any two process and B be a boolean expression. Then

T �

B

U if and only if for every modal formula F; B

0

` T :F , B

0

` U :F for any

B

0

such that B

0

) B.

Proof:

One direction follows immediately from the above Lemma since if B

0

) B and

T �

B

U then T �

B

0

U . To prove the converse suppose B

0

` T :F , B

0

` U :F

for any modal formula F for any B

0

such that B

0

) B. We will show that T �

B

U . For that we only need to show that if [[B[�]]] = tt for any evaluation � then

T [�] � U [�], and by Theorem 2.2 we only need to show that for any closed F ,

T [�] j= F , U [�] j= F .

So suppose [[B[�]]] = tt T [�] j= F ; we will show that U [�] j= F . Because

T satF ` T :F by Lemma 4.2 and B ^T satF ) B, so B ^T satF ` T :F . Thus

B^T satF ` U :F . Now because T [�] j= F [�] so [[(T satF )[�]]] = [[T [�] satF [�]]] =

tt, and moreover [[B]] = tt, so [[(B^T satF )[�]]] = tt, so U [�] j= F by the soundness

of the proof system. 2

5 Conclusion

In this paper we have suggested a �rst{order modal logic for de�ning properties of

message passing processes and shown how at least some of the techniques which ap-

ply to the use of propositional modal logic and pure process algebras, [Lar88, Sti87]

can be extended to this setting. The �rst result is the de�nition of a characteris-

tic formula for each process and property a formula in the �rst{order modal logic,

which is logically equivalent to tt if and only if the process enjoys the property. The

second is a sound and complete proof system for proving that a speci�c process en-

joys a speci�c property. Of course this does not make the task of proving such a

statement trivial. Moreover the proof system is modulo not




