
Weak Bisimulations for a Calculus of Broadcasting Systems

M. Hennessy, J. Rathke

University of Sussex

March 13, 1995

Abstract

A theory of weak bisimulation equivalence is developed for the broadcast calculus CBS .

The exact notion of bisimulation we study is justi�ed by a characterisation in terms of

a version of barbed bisimulations. We then give two syntactic characterisations of the

associated congruence over �nite expressions. The �rst is in terms of a set of equations

together with an in�nitary proof rule to accommodate input pre�xes. The second uses a

�nitary proof system where the judgements are relative to properties of the data domain.

1 Introduction

The broadcast calculus, CBS, is a value-passing process calculus where process intercommuni-

cation is achieved by the broadcasting of values. The main operators of the language are

� x?T - receive a value v and proceed as T [v=x]

� e!T - broadcast the value of the expression e and proceed as T

� T j U - run processes T and T

meaning in all evaluations which satisfy the boolean constraint b the evaluation of T is seman-

tically equivalent to that of U . Here the proof rules depend on deductions which can be made

in an independent proof system for the data domain.

Here we carry out a similar programme of research, but now under the assumption that the

moves � ! are internal and therefore invisible; in the terms of [5] we develop a weak semantic

theory for CBS. Once more we justify our choice of equivalence using a weak version of barbed

bisimulation and in this case it coincides with a semantic equivalence previously suggesed in

[8]. We then go on as in [4] and give two di�erent proof theoretic characterisations of the

associated congruence over �nite processes; one over closed terms which requires an in�nitary

rule and one over open terms which is relative to an independent proof system for the data

domain.

We now outline the remainder of the paper. In section 2 we give the syntax of the particular

version of CBS we study. It is similar to that of [8] except that the input pre�x x?T is

replaced by the input guard x 2 S?T where S can be any subset of values. We then give

an operational semantics in terms of a labelled transition systems and de�ne weak barbed

bisimulation equivalence. Finally we characterise the largest CBS congruence contained in this

equivalence using the version of weak bisimulation equivalence considered in [8].

In Section 3 we give the in�nitary equational characterisation of this congruence over closed

�nite expressions. We use the equations from [4] which characterise noisy bisimulation equiva-

lence but in addition new equations are required in order to capture the fact that � ! moves are

internal. Unfortunately two of the � -laws of [5] are unsound in the context of CBS; they are

replaced with weaker variants.

In the �nal section, Section 4, we give the sound and complete �nitary proof system,

relative to an adequate theory of the data domain. Here we follow closely the approach of [3],

and although the technical details are somewhat complicated, we simply adapt the techniques

of [4] to take into account the internal moves � !.

2 Syntax and semantics

The language we will use is that of [4] based on CBS+ [8]. It is a CCS variant in which the

traditional handshaking form of communication is replaced by the broadcasting of values. A

BNF grammar describing the syntax of the language is

T ::= O j e!T j x 2 S?T j b� T j

X

i2I

T

i

j T jT j T

(f;g)

j A(~e):

where e 2 V alExp, a set of data expressions, x 2 V ar, a set of variables, b 2 BoolExp, a set of

boolean expressions and S ranges over subsets of a prede�ned set of values V al. We do not give

a speci�c syntax for these expressions but we will assume that V alExp contains at least the set

of values V al [f�g (where � is a distinguished value not appearing in V al) and that BoolExp

contains the expressions e = e

0

and x 2 S for every e; e

0

2 V alExp; x 2 V ar and S � V al. In

addition we assume that evaluations, functions � from V ar to V al, can be lifted to V arExp and

BoolExp in a straightforward manner. We denote the value of a closed (having no occurences

of variables) expression by [[e]]; this value is of course independent of �. We have substitutions

in data and boolean expressions written as e[e

0

=x]; b[e

0

=x] where the data expression e

0

is to be

substituted for all occurences of x in e; b respectively. Substitution is extended to terms in

the obvious way except that only free occurences of variables are substituted; the input pre�x

x 2 S?T binds the variable x in T . This gives rise to the familiar notions of free variables

of a term, fv(T), and �-equivalence between terms. We call a term P a process or agent

if P contains no free variables. Certain metavariables will be used, consistent with those of

2

[4]. P;Q; : : : will denote closed processes whereas T; U; : : : will denote arbitrary terms of the

language, v ranges over values in V al and w over values in V al [f�g.

The process e!P is the process which broadcasts the value of the expression e and then

continues to behave like P . Input pre�xing is decorated with a set S � V al which is called

the input guard. The process x 2 S?T may only receive values present in S; upon receipt

of such a value v it continues to behave like T [v=x]. The boolean guard b � T is a data

testing operator where b acts like a boolean guard to T . In T

(f;g)

f and g are functions

from V al [f�g to V al [f�g such that f(�) = g(�) = � and are used to localise and rename

messages. Communication is achieved via the multiway parallel operator j. Process constants

A(~e) are used to de�ne recursive processes and we asssume throughout the report that with

each constant name, A, we have an associated de�nition

A(~e)

def

= T

A

:

The operational semantics for closed terms of the language is presented in Figure 1, where

symmetric rules for the choice operator + have been omitted. It is exactly the operational

semantics used in [4] which in turn is based on that of [8]; in terms of [6] it is an early

operational semantics. The use of the discard transition, written T

w:

�! T , may be unfamiliar

to the reader. This is essentially a negation of the transition T

w?

�! T

0

for some T

0

(see

Lemma 2.1 below) and is used to facilitate the presentation of the semantics for the parallel

operator.

The following lemma is imported from [4]. It states a few simple facts about the operational

semantics which are used extensively in the subsequent proofs.

Lemma 2.1 For every agent P

i if P

w:

�! Q then Q is P .

ii P

v:

�! Q if and only if there does not exist a Q such that P

v?

�! Q.

iii P

� :

�! P . 2

Weak moves, traditionally denoted by the double arrow, can now be de�ned as the least

relations between closed terms that satisfy the following:

� P

"

=) P

� P

�

�! Q implies P

�

=) Q

� P

� !

�!

�

=) Q implies P

�

=) Q

� P

�

=)

� !

�! Q implies P

�

=) Q

where � 2 fw!; v?; w :g. We will occasionally use the notation P

� !�

=) Q to mean P

� !

=)

�

=) Q,

and we will de�ne �̂ to be " when � = � ! and � otherwise.

We turn now to the de�nition of a weak semantic equivalence, which abstracts away from

the occurrence of � ! actions. As in [4] we use the technique of barbed bisimulations [10] to

provide us with an appropriate notion of weak bisimulation. In [4] the method provided a novel

version of strong bisimulation called noisy bisimulation and it transpires that the congruence

associated with weak barbed bisimulation will be characterised by the corresponding weak

version of noisy bisimulation.

For any value v let P # v mean that there exists a P

0

such that P

v!

�! P

0

.

3

Discard Input Output

O

w:

�! O

w 62 S

x 2 S?T

w:

�! x 2 S?T

v 2 S

x 2 S?T

v?

�! T

Proof. We only outline the proof here as the details are similar to those in [10]. Given a

value set V al we extend this to a value set V al

+

de�ned to be the disjoint union of the sets

V al, V al

0

def

= fv

0

j v 2 V alg; fin; out; cg and fd

i

j i 2 Ng. We de�ne translation functions on

V al

+

[f�g as follows:

g(w) =

(

w

0

if w 2 V al

w otherwise.

f(w) =

(

� if w 2 V al [fcg

w otherwise.

h(w) =

(

� if w = c

w otherwise.

Armed with these we can build a collection of static contexts C

n

[] similar to those in [10]. A

full explanation of the construction of Sangiorgi's contexts can be found in his thesis. Ours di�er

only in that we explicitly translate communicated values into � actions using the translation

functions and we require the use of a distinguished value c which plays the rôle of a private

channel for communicating with and incrementing the counter.

We let + denote binary choice and de�ne

Count

n

def

= d

n

!O+ x 2 fcg?Count

n+1

and the constant D

D

def

= x 2 V al?c!c!(� !(g(x)!O+ out!O) + � !D)

+

P

v2V al

v!c!c!(� !(g(v)!O+ in!O) + � !D)

+ � !d

0

!O

+ � !d

1

!O

The contexts we require then are de�ned by

C

n

[]

def

= ([]

[id;h]

jDjCount

n

)

[f;id]

:

Given these we de�ne a relation S = f(R; S)

De�nition 2.7 Observational congruence

�

=

is the symmetric relation de�ned by P

�

=

Q if

� if P

w!

�! P

0

then 9Q

0

�Q

w!

=) Q

0

and P

0

� Q

0

� If P

v?

�! P

0

then 9Q

0

:Q

v?

=) Q

0

and P

0

� Q

0

or Q

� !v:

=) Q

0

and P

0

� Q

0

� If P

v:

�! P then Q

v:

�! Q

Theorem 2.8 P

�

=

barb

Q if and only if P

�

=

Q.

Proof. We leave the reader to check that

�

=

is preserved by all the operators in CBS and since

P

�

=

Q trivially implies that P �

barb

Q we conclude that P

�

=

Q implies P

�

=

barb

Q.

Conversely, suppose P

�

=

barb

Q. Then C[P + v

0

!O] �

barb

C[Q+ v

0

!O] for all static contexts

C[], where v

0

is some distinguished value not in V al. It follows from Proposition 2.6 that

P + v

0

!O � Q+ v

0

!O.

We now prove that P + v

0

!O � Q+ v

0

!O implies P

�

=

Q. As an example we show P

v:

�! P

implies Q

v:

�! Q; the remaining requirements are similar. From P

v:

�! P it follows that

P + v

0

!O

v:

�! P + v

0

!O also. By the hypothesis we know that Q + v

0

!O

v??

=) Q

0

for some

Q

0

� P + v

0

!O. This means that Q

0

is Q + v

0

!O as otherwise Q

0

v

0

!

�!6 . So we have that

Q + v

0

!O

v:

�! Q+ v

0

!O which in turn implies that Q

v:

�! Q. 2

3 Characterising Observational Congruence over Finite Agents

We present an algebraic characterisation of observational congruence over a class of �nite

agents. The syntax for this �nite sub-language is given by the grammar

T ::= O j e!T j x 2 S?T j b� T j T + T:

We have restricted the summation operator �

I

to binary choice + recursion is not allowed.

The extra CBS operators, parallel and translations, can be treated in this language by using

a suitable expansion law and coding technique [4], Section 7. We denote the class of agents

(closed terms) de�nable in this sub-language by FA and we use �; � to range over arbitrary

pre�xes of the form e! and s 2 S?.

The algebraic characterisation is in terms of a proof system whose rules are given in Figure 3;

it is the standard adaption of an equation proof system to handle a value-passing language.

The main non-standard rule is the in�nitary proof rule cl-INPUT to deduce judgements about

expressions involving input pre�xes.

We now discuss the required equations.

Ident: X + 0 = X

Idemp: X +X = X

Comm: X + Y = Y +X

Assoc: X + (Y + Z) = (X + Y) + Z

Noisy: e!(X + x 2 S?X) = e!X if S \ I(X) = ;

Pattern: x 2 S?X + x 2 S

0

?X = x 2 S [S

0

?X

Empty: x 2 ;?X = O

Tau1: e!(� !X +X) = e!X

Tau2: �:(X + � !Y) + �:Y = �:(X + � !Y)

Tau3: X + x 2 S?Z + � !(Y + x 2 S?Z) = X + � !(Y + x 2 S?Z) if S � I(X)

Tau4: e!X + � !(Y + e!X) = � !(Y + e!X)

Figure 2: Axioms A

cl

for weak bisimulation (closed terms)

- I(b� P) =

(

I(P) if [[b]] = tt

; otherwise

Pattern : x 2 S?X + x 2 S

0

?X = x 2 S [S

0

?X:

Empty : x 2 ;?X = O:

As noisy congruence is strictly contained in observational congruence it is clear that we also

require these axioms for our present characterisation. In addition to these axioms then we

require analogies of the tau laws of CCS:

A1 �:�:P =

ccs

�:P .

A2 �:(P + �:Q) + �:Q =

ccs

�:(P + �:Q).

A3 P + �:P =

ccs

�:P .

Unfornutately A1 and A3 are not sound for CBS. We have already seen, for example, that P

is not, in general, weakly bisimilar to � !P which implies, for example that 0!� !P 6

�

=

0!P . For

A3 we run into di�culties when P is allowed to recieve any value v, say. For then � !P may

discard v but P + � !P is obliged to receive it. We adopt admissible versions of these axioms.

A1 simply becomes

Tau1 : e!(� !X +X) = e!X;

A2 is adapted to

Tau2 : �:(X + � !Y) + �:Y = �:(X + � !Y),

and A3 splits into two axiom schemes

1

1

It is possible, for present purposes, to give these two as a single axiom scheme though to be consistent with

the sequel we use two.

8

EQUIV

P = P

P = Q

Q = P

P = Q Q = R

P = R

AXIOM

P = Q 2 AX

P� = Q�

CONG

P

1

= Q

1

P

2

= Q

2

P

1

+ P

2

= Q

1

+ Q

2

�-CONV

x 2 S?T = y 2 S?T [y=x]

y 62 fv(T)

cl-INPUT

� !T [v=x] + � !U [v=x] = � !U [v=x] for every v 2 S

x 2 S?T + x 2 S?U = x 2 S?U

OUTPUT

P = Q; [[e]] = [[e

0

]]

[[e]]!P = [[e

0

]]!Q

BOOL

[[b]] = tt

b�

We say a closed term is in standard form if it has the form

X

i2I

!

e

i

!T

i

+

X

i2I

?

x

i

Theorem 3.5 (Decomposition) Let S = I(Q)� I(P) and S

0

= I(P)� I(Q). P � Q i� one of

the following holds:

(i) P + x 2 S?P

�

=

Q+ x 2 S

0

?Q and when S and S

0

are both non-empty there exist P

0

; Q

0

such that d(P

0

) < d(P); d(Q)< d(Q

0

) and P

0

� P;Q

0

� Q.

(ii) P + x 2 S?P + � !P

�

=

Q + x 2 S

0

?Q and when S

0

is non-empty there exist P

0

; Q

0

such

that d(P

0

) < d(P); d(Q

0

) < d(Q) and P

0

� P; Q

0

� Q.

(iii) P + x 2 S?P

�

=

Q + x 2 S

0

?Q + � !Q and when S is non-empty there exist P

0

; Q

0

such

that d(P

0

) < d(P); d(Q

0

) < d(Q) and P

0

� P; Q

0

� Q.

Proof. The `if' direction is standard. So suppose P � Q.

This can be inferred from the rule cl-INPUT if we can prove for each v 2 S

j

l

A

cl

`

cl

� !T

j

[v=x] + � !U

l

[v=x] = � !U

l

[v=x]:

So let us �x a particular v 2 S

j

l

and see how this can be inferred. We know that T

j

[v=x] � Q

v

l

so from this we will show that

A

cl

`

cl

� !T

j

[v=x] = � !Q

v

l

and the result will follow by the Derivation Lemma and Tau2.

For convenience let P;Q denote T

j

[v=x]; Q

v

l

respectively. We now apply Theorem 3.5 to

get one of three possibilities

(i) P + x 2 U?P

�

=

Q+ x 2 V ?Q

(ii) P + x 2 U?P + � !P

�

=

Q+ x 2 V ?Q

(iii) P + x 2 U?P

�

=

Q+ x 2 V ?Q+ � !Q

where U = I(Q)� I(P) and V = I(P)� I(Q). We show how to deal with case (iii) and leave

cases (i) and (ii) to the reader. We have two eventualities to consider.

1. U = ;

Here we have P

�

=

Q+ x 2 V ?Q+ � !Q and we can use induction to obtain A

cl

`

cl

� !P =

� !(Q+ x 2 V ?Q + � !Q). Now we can apply the Noisy scheme to obtain

A

cl

`

cl

� !P = � !(Q+ x 2 V ?Q + � !(Q+ x 2 V ?Q))

from which A

cl

`

cl

� !P = � !(Q + x 2 V ?Q) follows by Tau1. Another appplication of

Noisy gives the required result.

2. U 6= ;

Here we have P + x 2 U?P

�

=

Q + x 2 V ?Q + � !Q and in this case we cannot ap-

ply induction immediately as the combined depth of the terms has not decreased. But

Thereom 3.5 tells us that there exists P

0

; Q

0

such that d(P

0

) < d(P) and d(Q

0

) < d(Q)

such that P

0

� P and Q

0

� Q. Suppose without loss of generality that d(P) � d(Q).

Then, that)

4 A Finitary Proof System

We now show that the proof system of the previous section can be improved upon by remov-

ing in�nitary inference rules. This improvement brings the proof system out of the realm of

theoretical proof machines by making its implementation a realistic task. The proof system we

develop is for observational congruence over open terms of the �nite sublanguage presented in

Section 3. It follows closely the corresponding proof systems given in [3, 4].

The judgements of the proof system are now decorated with boolean expressions:

b � T = U

and intuitively this is meant to denote that T�

�

=

U� for every evaluation � such that �(b) = tt.

The inference rules for the proof system, borrowed directly from [3, 4] are given in Figure 4.

We also borrow the notation � j= b to mean [[b�]] = tt and b j= b

0

to mean that � j= b implies

� j= b

0

.

We state a few simple facts about the proof system which we make use of in the sequel;

they show how booleans can be manipulated in the proof system.

Proposition 4.1

(i) b j= b

0

implies ` b � T = b

0

� T

(ii) ` b� (T + U) = (b� T) + (b� U)

(iii) ` (b� T) + (b

0

� T) = b _ b

0

� T

(iv) b j= b

0

and ` T = T + b

0

� U implies ` T = T + b� U . 2

We use more or less the same equations as in the proof system for closed terms. There are

two exceptions, Noisy and Tau3. These are in fact axiom schemes and are de�ned in terms

of the sets I(P) for closed expressions P . In order to generalise these axiom schemes to open

terms we need to extend the function I to open terms. We follow the approach taken in [4]

and relativise it to a boolean world, de�ning I(b; T

EQUIV

tt � T = T

b � T = U

b � U = T

b � T = U b � U = V

b � T = V

AXIOM

T = U 2 AX

tt � T� = U�

CONG

b � T

1

= U

1

b � T

2

= U

2

b � T

1

+ T

2

= U

1

+ U

Discard Input Output

O

tt;V al:

�! O

x 2 S?T

tt;V al�S:

�! x 2 S?T

y 62 fv(x 2

Proof. Let B

1

= fb ^ b

K

j K � I

?

g and B

2

= fb ^ b

L

j L � J

?

g where I

?

and J

?

are indexing

sets of the standard forms T and U respectively. We let B

0

be the b-partition f

Case T

b

1

;� !

=) U

b

2

;x2S

0

?

�! T

0

.

Suppose that U

?

�

P

I

?

b

i

� x

i

2 S

i

?U

i

. We let

B

u

= fb ^ b

K

j K � I

?

g:

Clearly then B

u

is a U -uniform partition of b. Choose any b

u

(= b ^ b

K

) 2 B

u

. We know

that b

u

j= b j= b

2

so b

2

must be equal to some b

i

0

for some i

0

2 K. This means that

S

0

= S

i

0

� I(b

u

; U). Therefore by induction we get

A

op

` U = U + b

u

� x 2 S

0

?T

0

:

This is true for each b

u

2 B

u

so we can add to get

A

op

` U = U +

X

B

u

b

u

� x 2 S

0

?T

0

:

Thus by manipulating the boolean guards, remembering that B

u

is a b partition, we get

A

op

` U = U + b� x 2 S

0

?T

0

whence

A

op

` U = U + b� x 2 S?T

0

:

Using part (i) we know that

A

op

` T = T + b

1

� � !(U + b� x 2 S?T

0

):

Recall that b j= b

1

, b is T -uniform and S � I(b; T) so we can apply Op-Tau3

�

to get the

result.

(iii) We assume that T is a standard form. We know that T

b

0

;� !S

0

:

=) T

0

so suppose

T

b

1

;� !

=) U

b

2

;S

0

:

�! U

b

3

;"

=) T

0

where b

0

= b

1

^ b

2

^ b

3

. Suppose also that U

?

�

P

I

?

b

i

� x 2 S

i

?U

i

. Then

b

2

=

^

j2J

:b

j

and S

0

=

\

j2I

?

�J

(V al � S

j

)

for some discard index J � I

?

. We let B

u

= fb^b

K

j K � I

?

g be a U -uniform, b partition

and observe that whenever j 2 K \ J we have that b ^ b

K

j= b

j

and b ^ b

K

j= b

2

j= :b

j

.

Reading this contrapositively we have that b ^ b

K

6= � implies K \ J = ;.

Our intention is to prove

A

op

` b ^ b

K

� � !U = � !(U + x 2 S?U)

by applying axiom Op-Noisy (or ABSURD when b ^ b

K

= �) to U for each b ^ b

K

. In

order to do this we need to show that S \ I(b ^ b

K

; U) = ; whenever b ^ b

K

6= � .

Suppose then that b ^ b

K

6= � and suppose for contradiction that v 2 S \ I(b ^ b

K

; U).

This means that v 2 S and v 2 S

j

0

for some j

0

2 K. But v 2 S implies that v 2 S

0

=

T

j2I

?

�J

(V al � S

j

), that is v 62 S

j

for each j 2 I

?

� J . Therefore j

0

62 I

?

� J and we

conclude that j

0

2 J , which contradicts K \ J = ;.

19

We can now apply axiom Op-Noisy (ABSURD) for each b^ b

K

in B

u

and then use CUT

to obtain

A

op

` b � � !U = � !(U + x 2 S?U):

Boolean manipulation and part (i) gives

A

op

` T = T + b� � !(U + b� x 2 S?U):

So an appication of axiom Op-Tau3

�

yields

A

op

` T = T + b� x 2 S?U:

The result follows easily now; if U is T

0

we are done, otherwise we use part (i) to give

A

op

` T = T + b� x 2 S?(U + � !T

0

)

and apply axiom Tau2 to �nish. 2

Theorem 4.7 (Completeness)

T

�

=

b

U implies A

op

` b � T = U:

Proof. We assume standard forms

X

i2I

!

c

i

� e

i

!T

i

+

X

i2I

?

c

i

� x

i

2 S

i

?T

i

and

X

j2J

!

d

j

� e

i

!U

j

+

X

j2J

?

d

j

� x

j

2 S

j

?U

j

for T and U respectively. We modify these forms in the following way: Suppose z 62 fv(b; T;U).

For each i 2 I

?

we have that T

c

i

;z2S

i

?

�! T

i

[z=x

i

]: Since T

�

=

b

U we know that there exists a

matching b ^ c

i

^ z 2 S

i

-partition, B. Because z 62 fv(b; c

i

) we know that each element of B

is logically equivalent to something of the form b

0

^ z 2 S

i

k

(for some indexing set K) where

W

b

0

� b^ c

i

and

S

S

i

k

= S

i

. We use the axiom Pattern to decompose the summand x

i

2 S

i

?T

i

of T into the sum

P

k2K

x

i

2 S

i

k

?T

i

and we distribute c

i

across this sum. We repeat this for

each i 2 I

?

and also for U .

Having done this T and U enjoy the property that whenever T

c

i

;x2S

i

�! T

i

there exists a

b ^ c

i

^ x 2 S

i

-partition, B, such that for each b

0

2 B there exists a d; S; U

0

such that

U

d;x2S?

=) U

0

or U

d;� !S:

=) U

0

with b

0

j= d, S

i

� S and T

i

�

b

0

U

0

. Moreover given any such partition

we can transform it into a U -uniform partition by de�ning

B

u

= fb

0

^ d

K

j b

0

2 B; K � J

?

g:

It is su�cient, due to symmetry, to prove for every transition T

b

0

;�

�! T

0

that

A

op

` b � b

0

� �:T

0

+ U = U

where � is of the form e! or x 2 S? We show how to deal with the latter, the former being

slightly easier.

Fix i 2 I

?

and consider T

c

i

;z2S

i

?

�! T

i

[z=x

i

]. We know that there exists a U -uniform, b^c

i

^z 2

S

i

-partition, B

u

such that each b

u

2 B

u

is of the form b

0

^ z 2 S

i

where the fb

0

g form a b ^ c

i

partition. Furthermore, each b

0

is of the form b

0

0

^ d

K

for some K � J

?

. For each such b

u

20

We know that b

0

j= c

i

and therefore b

�

6j= :c

i

. This means that i is not in the discard index of

T

b

�

;S

�

:

�! T which in turn means that S

i

� (V al � S

�

). But V al � S

�

= V al� S

dc

=

S

j2K

S

i

=

I(b

0

; U) so we have S

i

� I(b

0

; U).

We also ful�l our obligation in proving

A

op

` b

u

� c

i

� � !T

i

[z=x

i

] + b

0

� � !U

0

= b

0

� � !U

0

:

For convenience let T

0

denote T

i

[z=x

i

]. We know that T

0

�

b

u

U

0

References

[1] E. Best, editor. Proceedings CONCUR 93, Hildesheim, volume 715 of Lecture Notes in

Computer Science. Springer-Verlag, 1993.

[2] M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92, University of

Sussex, 1992.

[3] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. In Best [1],

pages 202{216.

[4] M. Hennessy and J. Rathke. Strong bisimulations for a calculus of broadcasting systems.

Computer Science Report 1/95, University of Sussex, 1995.

[5] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood

Cli�s, 1989.

[6] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Infor-

mation and Computation, 100(1):1{77, 1992.

[7] K.V.S. Prasad. A calculus of broadcast systems. In TAPSOFT 91 Volume 1: CAAP.

Springer Verlag, 1991.

[8] K.V.S. Prasad. A calculus of value broadcasts. Technical report, Dept. of Computer

Science, Chalmers, 1992.

[9] K.V.S. Prasad. Programming with broadcasts. In Best [1].

[10] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1993.

23

