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Introduction

This report contains two papers which use categorical methods

to present accounts of concurrency{theoretic material. In both cases the

aim has been to uncover essential underlying structure by giving a suitably

universal characterisation of it.

The �rst paper, A Functorial Semantics for Observed Concur-

rency, is joint work with Axel Poign�e (GMD St. Augustin), and was done

during this author's Royal Society Fellowship at the GMD. It presents

a unifying account of concurrency theories based on the idea of observ-

ing systems over time. This material �rst appeared in [1], and the paper

appearing here is a slightly modi�ed version of op. cit.

The second paper presented here, Process Synchronisation as

Glueing, is joint work with Stefano Kasangian (Venice) and Anna Labella

(Rome), gives a model of processes with multiway synchronisation �a la

CSP. This account is parametric, being based on glued forests of trees,

and thus can be instantiated as a variety of interleaving or `true concur-

rency' models depending on how the forest is read as a transition system

(or, more generally, behavioural structure). A satisfactory account of pro-

cess synchronisation is given as a glueing construction over forests, and

other process combinators are universally characterised. The paper pre-

sented here concentrates on showing how the glueing construction works

at a relatively concrete level: a more comprehensive discussion, treating

additionally notions of behaviour and equivalence, and giving further de-

tails on the modelling of the process combinators, will appear in a later

paper.

On a more personal note, to conclude, it is my hope that the

use of categories will continue to grow in concurrency theory. One feels a

certain hostility to their use in some quarters, akin one supposes to the

hostility most new and challenging mathematical tools face: only time

will tell if this is a luddite reaction as one often supposes or a reasoned

criticism.

David Murphy,

Brighton,

Easter 1994.

[1] D. Murphy and A. Poign�e, A Functorial Semantics for Observed Con-

currency, in the Proceedings of Mathematical Foundations of Com-

puter Science (MFCS) 1992, Springer-Verlag LNCS 629.



A Functorial Semantics for Observed Concurrency

David Murphy and Axel Poign�e

28th April, 1994

Abstract

This paper presents a meta-model of observation in concur-

rency theory; it allows us to unify notions of observation in

many di�erent behavioural settings. We treat traces, pro-

cess trees and event structures, and show how observations

of them �t into a common framework. Behaviour and obser-

vation will both be modeled as categories and linked using

the notions of `functor' and `adjunction'.

Timing will be our chief example of observation;

we present a timed traces model, and show how it general-

ises to timed process trees (branching time) and timed `true

concurrency.' Our general framework sees timing as a way

of embedding observations into time. Stable categories of

embeddings are then natural metamodels of timed observa-

tion.

I always console myself with the thought that whatever can be

known of me is by de�nition not me, is hetronomous to my au-

thentic being, since the subject cannot be captured in an objective

representation.

Terry Eagleton

x1. Introduction

Concurrency theory is now a large area; there are many con-

currency theories, and many notions of `concurrent system.' This paper

is a contribution towards unifying this chaos; we provide a meta-model

of concurrency. In particular, the notion of `behaviour',|what a system



does,|is separated from `observation',|what can be seen of it. These two

notions are formulated as categories and linked using adjunctions, giving

a model that specialises to several well{known concurrency theories.

The rest of the paper is structured thus; in the rest of this sec-

tion we provide some background. Then, as a motivating example, we

present the essentials of a timed traces model. The elementary mechanics

of the meta-model are then presented. We next show



on. Worst case processes correspond to observing `all the time' and hence

de�ne the structure of time appropriate to that kind of observation.

Our main result is to de�ne various observers and to show that

they are canonical with respect to certain types of behaviour; traces,

branching time and true concurrency. This makes the relationship between

behaviour and observation somewhat clearer. We then give a general

framework of which all of our examples are instances and which provides

pleasing general structure.

x2. A Timed Traces Model

A basic notion of behaviour given in Hoare's

[

12

]

is that of a trace:

the behaviour of (an execution of) a concurrent system is represented by

a sequence of actions:

De�nition 1. Given a set of possible actions a process P might engage

in, A, the set of traces of P , tr(P ), is a subset of the set of all possible

sequences of actions tr(P ) � A

�

.

Each occurrence of an action a in a given trace s can be identi�ed

uniquely by its position in the trace, so we can assume as given a set of

unique or L{labeled occurrences of actions, E = L�A. This set of events,

with typical members e; f, will be more convenient to work with than A.

x2.1. Timing

In this section we will extend the traces model to timed traces;

our treatment is a little idiosyncratic, because we want to emphasise some

points that will be important later. A more standard presentation is

[

9

]

,

where a good introduction can be found.

We will suppose as usual that points of time are reals and that

things start at t � 0. Then, a timed trace of P is a trace s 2 tr(P )

together with a function � : E ! R

+

that assigns a nonegative real to an

(assumed atomic) event.

De�nition 2. A trace timing is a function � which is

Consistent. Write 6

s

for the sequence order of the trace s, Td
(for)Tj
23.27 .p4s



a function � : R

+

! E that tells us the last thing that happened

at r 2 R

+

satisfying

�(r) = e =) � (e) � r ^ (1)

� (e) � � (f) � r =) e = f (2)

The connection between � and � is thus

�(� (e)) = e (3)

� (�(r)) � r (4)

Notice that we do not allow events to be simultaneous, since

� is a function, not a relation. If we wanted to have events happening

simultaneously, we could adopt the trick of dealing with sequences of sets

of actions rather than sequences of actions.

x2.2. A more abstract setting

Any model of observation must answer the question `What is

the connection between the behaviour and the possible observations of a

process ?' To answer this we must say how to formalise `behaviour' and

`observation'.



Our observations are just the times things happen, so we will be interested

in the usual time domains R

+

;Q

+

and N

+

. These can be made into

categories in various ways,



Thus a real timing of a trace s is precisely a canonical R

+

timing

of the behaviourS, justifying the previous de�nition somewhat. It is clear

that de�nitions of integer{timed and rational{timed trace models follow

just by writing N or Q for R.

x2.4. Embedding

Our requirement that f

!

is a full and faithful functor left{adjoint

to f

�

is chosen because we want to think of f

!

as embedding behaviour into

time. This will be a common theme; a T{timing of B will be a way of

telling what happened when; an embedding of B into T. Thus our real

interest is the power observers must have, { what structure T must have, {

in order to be able to de�ne this embedding. The last proposition merely

amounts to saying that one observer with a clock is enough to `see' an

execution in the traces model.

x3. An abstract view of other theories

Many other models of concurrency �t into the setting outlined

above. Here we consider branching time (represented by process trees);

pure concurrency (essentially Shields' cubical automata); and true con-

currency (Winskel's event structures).

x3.1. Branching time

An obvious elaboration of behaviour beyond a trace model is

branching time. Here we represent a process by a tree, with the branches

indicating possible executions, and the branching structure recording non-

determinism. Observationally, this corresponds to an observer who, each

time a choice is presented, makes separate copies of himself to explore

each alternative. This naturally gives rise to a branching structure|hence

`branching time'.

De�nition 6. A branching time behaviour is a tree (E;6

m

) with count-

able underlying set E. Each process tree M = (E;6

m

) gives rise to cat-

egory M as indicated in section 2.2. (The tree e

%

&

f

g

indicates that the

traces he; fi and he; gi are possible, but not he; f; gi: the event e causes f

or g but not both.)

In order to be able to time a branching time process, the ob-

server must be able to branch. A suitable category to time branching

time processes therefore is the Baire tree:

7







f

!

:M! B (a canonical timing) followed by U : B! R

+

(forgetting the

branching structure):

M

f

!

�!

 �

f

�

B

U

�! R

+

Clearly U cannot in general enjoy any universal properties, as there are

no canonical linearisations of trees.

x3.2. Pure concurrency

The results of our model for purely concurrent processes (ones

with no nondeterminism) are quite suprising. We begin with a notion of

such processes closely related to the cubical automata of Shields

[

23

]

.

De�nition 13. A purely concurrent process is a poset Q = (E;6

q

; 0) with

a least element. Each such gives rise to category Q in the usual way. (The

poset e

%

&

f

g

indicates that the traces he; f; gi and he; g; fi are possible.

The event e causes or must happen before f and g; the events that enable

a given one are just those in its down-closure.)

To time such a purely concurrent process we need to have an

observer everywhere that a distributed transition might happen. We will

take the Petri net view and assume that a single observer can see every

occurrence of the same action since that action always happens at a given

transition of the net, and the observer need merely wait there. Thus the

timing space of interest is (R

+

)

L

for some set of locations L, and in the

Petri net world we can identify L with the set of possible transitions A.

It is reasonable to assume that L is countable, so we need only deal with

countable powers of R

+

.

What order �

a

should we give to this space ? Two possibilities are obvious;

Localh4 Tf
7.68008 go5.6797 0 Td
[(happ)-1999]TJ
21.
(t4 Tf
9.83984 09o]TJ
45.5)2000.63(t522000.63(e08.54af
7.43984 0 Td
(i; t.
(single)Tj
40.8 0T Td
(a)T6le









There are many categories T which it is di�cult to interpret as a model of

time, so we can pro�tably re�ne this de�nition. Behaviours are embedded

into time, so we will look for a general category of observation in which

observations are objects, an arrow f : t! t

0

indicates that the observation

t can be extended to t

0

. Here we can identify a time with the worst possible

observation we could have made up to it; the behaviours observable up to

some time t form the subobjects sub(t) of that time.

De�nition 20. A category is an observation category i�

(i)is9y



tions to those possible now. Moreover, these two functions form an

embedding/projection pair.

The fact that (f

�

; f

!

) is a rigid embedding/projection pair means that

there are no gaps in the image of f

!

; this is reasonable if translated

into primitive terms: if e � �(r) then there is a r

0

� r such that

e = �(r

0

).

x4.2. Objects of time

In most of the cases of timed observation we have seen, there is

a worst possible behaviour 
 which is isomorphic to the structure of time.

Any behaviour, then, is a subbehaviour of this one, and the timing and

last thing functions � and � give rise to the adjunction (8) above with

t

0

= 
, giving the connection with our previous de�nition of canonical

timing. In such cases, 
 is clearly a weakly terminal object. We do not

require the existence of such an object in all observation categories, since

there are some situations where there is no canonical observer and thus

no



isations of stable categories of embeddings, which throw some light into

the independence of our conditions.

The in�nite objects in stable categories of embeddings arise only

as �ltered colimits of the �nite ones. This means that we can see any

observation category as a suitable completion of a category of �nite ob-

servations:

De�nition 25. A category of events is a small one where all arrows are

monos and where each slice is a �nite distributive lattice.

Proposition 26. Any observation category arises as the ind-completion of

some category of events.

We have seen that pullbacks and �ltered colimits are important properties

of observation categories. This motivates

De�nition 27. A functor is called stable if it preserves pullbacks, and con-

tinuous if it preserves �ltered colimits. (These being the obvious general-

isations of the associated concepts for maps between ordered structures.)

Proposition 28. The category of stable and continuous functors between

two observation categories C and D with cartesian natural transformations

as morphisms, SC[C;D], is an observation category.

This last proposition gives us the key to the structure of the category of all

observation categories, and hence to a possible meta-logic of observation;

Proposition 29. The category of observation categories with stable and

continuous functors as morphisms is a cartesian-closed category.

x4.4. Instances of the situation

We are now in a position to show that our various models of

timed observation give rise to observation categories.

Proposition 30. All our examples of timing behaviours: timed traces;

timed process trees; and timed prime event structures: give rise to stable

categories of embeddings.

Proof. [Sketch.] We will tackle each case separately:

Traces. We will sketch this in some detail, and rely on more gen-

eral arguments for the remaining cases. We have to show that

the category of traces Tr (that is the category whose objects

are countable sets E endowed with a total order 6

s

and whose

16







x5. Concluding Remarks

We have shown that various notions of behaviour give rise to

canonical observers who can see the `worst' behaviour in that class. Real

timing information can then be recovered by forgetting the structure of

such observers. The structure of all possible observations of a given type

has also been discussed, and shown for the cases of interest to form a

stable category of embeddings. These categories congregate in a cartesian

closed category, giving some insight into the general logic of observation.

Further work

In this paper we have seen several examples and a general model.

On one hand the examples �t into the model. On the other, the axioms

of the model seem intuitively reasonable for observations. However, it is

possible that we can further restrict the model without losing the ability

to handle the examples. Further work includes:

� Throughout this paper we have concentrated on presheaves rather

than sheaves. That is, we have not used the fact that di�erent obser-

vations can be de�ned over di�erent intervals of time and then glued

together to form a larger observation. This is partly to keep the tech-

nical complexity of the paper manageable, and partly because sheaves

sometimes occur automatically; all presheaves of traces, for instance,

are sheaves. It would be interesting to consider the sheaf condition in

general, though; this might give some insight into behaviours recurs-

ively de�ned over time. Topologically, sheafhood relates to issues of

compactness which also deserve investigation.

� A standard way of recovering branching time information is to model

a single observation as a domain, then combine information about dif-

ferent runs using powerdomains. This is really a monadic technique,

so it would be pro�table to investigate whether we can adapt it to

our situation, rather than coding the branching structure of observers

explicitly.

� Our approach is based on the notion of observing a set of events. For

this reason, it is hard to see how an observation category that did

not have a forgetful functor to Set might arise; we should thus check

that restricting ourselves to concrete observation categories does not

signi�cantly change our results.

� In this paper we have only dealt with posets rather than pomsets,

and have generally ignored the issue of equivalences over behaviours:

both of these are fairly serious omissions and should be recti�ed.

19



Related work

There are several other approaches to �nding a meta-model of

timed concurrency that are related to the one presented here:

� It is possible to make more of the arithmetic operations on R

+

than

we do. Koymans

[

16

]

uses this structure to de�ne a temporal logic

based on the reals.

� This approach can be taken further using the concept of enrichment;

Pratt's group in

[

6

]

gives several categories based on the reals with a

monoidal structure. These are then used to enrich behavioural cat-

egories. Such techniques are comprehensively displayed in Kasangian

and Labella's

[

15

]

.

� Another starting point is idea that we can associate a set of predic-

ates with a state of a system|the things we know to be true of the

behaviour by that point. This means that an observation is a func-

tor F : B

op

! Set, and all possible observations live in the topos

[B

op

;Set]. Such a sheaf{theoretic viewpoint is taken by Ehrich et

al. in

[

10

]

, (where the model of timed observation forms an observa-

tion category) and used by Phoa and the �rst author to discuss the

logic of observation in these situations

[

21

]

.

� It is wise to admit that there are concurrency-theoretic models that

seem not to be related at all to the one presented here; the `concur-

rency as chemistry' metaphor of the chemical abstract machine

[

3

]

,

for instance, is very far from our paradigm.
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Process Synchronisation as Glueing

Stefano Kasangian Anna Labella David Murphy

28th April, 1994

Abstract

Process algebras based on the notion of concurrent processes

cooperating on common actions are commonplace in the lit-

erature. Here we give
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Figure 2: Two trees illustrating the rôle of agreement data.

We begin by giving a structure to capture the computations tak-

ing place along runs; a run will be labelled by what is, essentially, a word.

Our de�nition, though, will make the later de�nition of agreement and

glueing easier.

De�nition 1. Consider as given an alphabet A of actions, and let A

�

denote the set of words on A as usual, with � being the empty word.

De�ne AN as the set N � (A [ f�g), let a range over A [ f�g and say that

a set S � AN is

(i) consistent if the following all hold:

(a) for any n 2 N, there exists at most one (n; a) 2 S;

(b) if (n; �) 2 S then n = 0;

(c) if (0; a) 2 S then a = �.

(ii) pre�x closed if it is consistent and there is a (necessarily unique)

m 2 N such that

(a) n > m implies that (n; a) =2 S for any a, and

(b) n � m implies that there exists an a such that (n; a) 2 S.

In this case we call m the length of S, written jSj = m.

Example 2. A word s 2 A

�

gives rise to a pre�x closed set S � AN and

vice versa, via the bijection a

1

a

2

: : : a

m

$ f(0; �); (1; a

1

); : : : ; (m; a

m

)g.
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We will model trees as (a certain kind of) category enriched over

AN . Rather than give the general de�nition

[

12, 22

]

of a category enriched

over a 2{category, we specialised at once to the case in hand.

De�nition 7. A category X enriched over AN (or an AN -category) consists

of a triple (X; "; �) where

(i) X is a �nite



Example 9. Consider the AN{category (fx; x

0

g; "; �) where

"(x) = "(x

0

) = f(0; �); (1; a); (2; b)g

and �(x; x

0

) = f(2; 2; b)g. This is clearly not a tree, as the two `branches'

start separately and then join. (An even more pathological example is

obtained by setting �(x; x

0

) = f(0; 0; �); (2; 2; b)g.)

Example 10. An AN{category which consists of a forest of two trees

rather than a single tree is given by the following data: (fx; x

0

g; "; �)

where "(x) = "(x

0

) = f(0; �); (1; a)g, and �(x; x

0

) = ;.

3. Glueing

In this section we discuss how to glue branches of trees together.

Essentially to glue two trees, (X; "; �) and (Y; �; �), we give a function

 : X�Y ! arr(AN ), such that (x; y) is a consistent (but not necessarily

pre�x{closed) set assigning a glueing to x and y. Thus a glued forest will

consist of a collection of trees together with some glueing data connecting

branches in di�erent trees. We discuss some examples before giving the

general construction.

Notation 11. We will use X , Y etc. for AN{categories in general and trees

in particular; the sense will be clear from context. Typically X will have

components (X; "; �): Y, (Y; �; �), etc. Glueings will be represented by .

Example 12. Consider the process a : (b : 0+c : 0) jj b : d : 0. It is natural to

assign the forest in �gure 3 to this process, that is the trees X = (X; "; �)

and Y = (Y; �; �) where

"(x) = f(0; �); (1; a); (2; c); g

"(x

0

) = f(0; �); (1; a); (2; b)g

�(x; x

0

) = f(0; 0; �); (1; 1; a)g

�(y) = f(0; �); (1; b); (2; d)g

together with the glueing (x

0

; y) = f(2; 1; b)g, (x; y) = ;. We see that

this glueing between di�erent trees is a consistent but not pre�x closed

set.

Example 13. This example demonstrates multiple synchronisation.

Consider

(a : b : 0) jj (a : (b : 0 + c : 0)) jj (a : c : 0)

28
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Figure 3: An example glueing.

A reasonable forest to associate with this process is shown below: here we

have runs x, y; y

0

, z (in three di�erent trees) with

"(x) = �(y) = f(0; �); (1; a); (2; b)g

�(y

0

) = �(z) = f(0; �); (1; a); (2; c)g

(x; y) = f(1; 1; a); (2; 2; b)g

(x; y

0

) = (x; z) = f(1; 1; a)g

�(y; y

0

) = f(0; 0; �); (1; 1; a)g

(y; z) = f(1; 1; a)g

(y

0

; z) = f(1; 1; a); (2; 2; c)g

6

6

6

@

@

@

@I

�

�

�

��

6

6

a

b

a

b c

a

c

x y y

0

z

Discussion 14. This example demonstrates several important points:

(i) We indicate that y and y

0

are runs on the same tree, i.e. are not

distributed, by �(y; y

0

) 3 (0; 0; �). The need to be able to do this

explains why we keep (0; �) in every extent, and impose conditions

(d) and (e) of de�nition 3.

(ii) The conditions (a{c) of de�nition 3, in contrast, serve to ban im-

possible synchronisations: (a) and (b) forbid an action from syn-

chronising with two di�erent ones in the same run, i.e. they forbid

29
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Figure 5: A multiple glueing.

Thus we cannot hope for glued forests to be ssAN{cats in general,

as condition (c) of de�nition 3 fails. We must instead look at the matter

di�erently; �rst let us formally de�ne valid glueing data between two trees:

De�nition 16. A glueing  between two ss AN{cats X = (X; "; �) and

Y = (Y; �; �), written  : X �7! Y, is a function  : X � Y ! arr(AN )

satisfying

(i) It glues runs together: (x; y) 2 Hom["(x); �(y)].

(ii) It does not glue roots together: (0; 0; �) =2 (x; y) for any x 2 X,

y 2 Y .

(iii) It respects agreement of runs on X : (x; y) � �(x

0

; x) � (x

0

; y).

(iv) It respects agreement of runs on Y: �(y; y

0

) � (x; y) � (x; y

0

).

(v) It is symmetric: (x; y)

�

=

(y; x) via the ip condition.

Conditions (iii) and (iv) ensure that if x and x

0

agree along a in

X and we glue y along that a to x, then we have to glue it to x

0

along

that a too; cf. point (iii) of discussion 14 above.

Fortunately, this notion of glueing is already well{known in the

literature.

De�nition 17. For AN{categories X = (X; "; �) and Y = (Y; �; �), a

bimodule  from X to Y is a function  : X � Y ! arr(AN ) satisfying

(i) (x; y) 2 Hom["(x); �(y)].

(ii) It respects agreement of runs on X : (x; y) � �(x

0

; x) � (x

0

; y).

(iii) It respects agreement of runs on Y: �(y; y

0

) � (x; y) � (x; y

0

).

We have again specialised our de�nition immediately to the case

in hand; the general de�nition of bimodule over an enriched category is

given in

[

2, 21

]

.
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The following is now immediate, and justi�es the notation.

Theorem 18. A glueing  between two trees X and Y is a bimodule

 : X �7! Y.

Example 15 shows that a pair of trees glued by a bimodule do

not necessarily give rise to an AN{category. We do, however, have

Proposition 19. If  : X �7! Y is



(i) Z = X ] Y (modulo skeletality

�

)

(ii) �(0; x) = "(x), �(1; y) = �(y



The inclusion functor of trees into forests (and hence that includ-

ing trees in AN{Cat) clearly does not preserve coproducts, and so cannot

have a right adjoint. There is a left inverse

y

which takes 


i

X

i

and joins all

the X

i

together at the root, but this is of little concurrency{theoretic in-

terest. Perhaps of more interest is the following characterisation of Forest:

De�nition 26. A category D is the free �nite coproduct completion

[

8

]

of

a category C if the following two conditions are satis�ed

(i) D has all �nite coproducts and

(ii) For any category C

0

with all �nite coproducts and any functor F :

C ! C

0

there exists a �nite coproduct preserving functor F

0

: D ! C

0

extending F which is unique up to a natural isomorphism.

Lemma 27. The following characterisation of free �nite coproduct com-

pletion is equivalent

[

4

]

to the de�nition given above, and rather simpler

to work with.

The free �nite coproduct completion of a category C, written

Fam(C), has as objects �nite families fa

i

g

i2I

of objects of C, and as

arrows fa

i

g

i2I

! fb

j

g

j2J

pairs (�; ff

i

g) where � : I ! J is a Set{arrow,

and f

i

: a

i

! b

�(j)

is a C{arrow.

Proposition 28. Forest is the free �nite coproduct completion of Tree.

De�nition 29. The intersection of two AN{categories, X = (X; "; �) and

Y = (Y; �; �), written



We have seen that bimodules characterise glued trees. Thus it is

natural to organise these into a category.

De�nition 32. The category whose objects are bimodules X �7! Y, for

X and Y trees, and whose arrows (X �7! Y) �! (X

0

�7! Y

0

) are pairs

(F;G) where F : X ! X

0

, G : Y ! Y

0

are AN{functors satisfying

(x; y) � 

0

(F (x); G(y)) (�)

will be written Bim(Tree).

z

This de�nition makes sense when it is realised that since X �7! Y

is almost an AN{category (cf. proposition 19), the right notion of arrow

between such objects should be `almost' AN{functors:

Lemma 33. If (X]Y; "]�; �]�]) is an AN{category, and similarly for



0

, then F ]G is an AN{functor, so our requirement (�) that the `square'

X �7! Y

F # # G

X

0

�7! Y

0

should `commute' then reduces to requirement (ii) of de�nition 20 i.e. that

arrows between AN{categories should increase glueing.

It is clear that the category Tree

2

(of pairs of trees and pairs of

AN{functors) can be obtained from Bim(Tree) by forgetting glueing. In

fact, this extends to an adjointness:

Proposition 34. The forgetful functor U : Bim(Tree) ! Tree

2

de�ned

by

U : (X ;Y; ) 7�! (X ;Y)

has a left adjoint, ; : Tree

2

! Bim(Tree) which assigns the empty

glueing to two trees:

; : (X ;Y) 7�! (X ;Y; ;)

z

Note that this is not the usual notion of category of bimodules over a category. Indeed,

as AN is not locally cocomplete, we cannot even de�ne the usual notion, as the colimit

used to de�ne the composition of  : X �7! Y, and � : Y �7! Z, namely �(x; z) =

colim

y;y

0�(y

0

; z) � �(y; y

0

) � (x; y) need not exist.
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5. Maximal Glueing

We have shown that glueing branches of trees together can be

modelled as a bimodule. However, this is not quite enough to characterise

CSP's parallel composition; for there is also an element of compulsion: if a

synchronisation can happen, it will. In this section, we introduce a special

class of glueings which allow us to include this element of compulsion.

De�nition 35. Given two trees, X = (X; "; �) and Y = (Y; �; �), and a

pair of runs x 2 X, y 2 Y , a CSP agreement between x and y is an

element of Hom["(x); �(y)] satisfying

(i) (0; 0; �) =2 f (it does not glue roots together)

(ii) If (n;m; a) 2 f then, for all n

0

< n, (n

0

; b) 2 "(x) implies either

(a) 9m

0

< m such that (n

0

;m

0

; b) 2 f , or

(b) :9m

0

such that (m

0

; b) 2 �(y).

So that for all elements before a glued one, either they too are glued,

or there is nothing they could possibly be glued to.

(iii) Vice versa for m.

Lemma 36. Conditions (i) and (ii) of de�nition 35 do indeed de�ne a

family of consistent subsets of ANN .

Lemma 37. The CSP agreements between two runs are linearly ordered

by inclusion.

Notation 38. We will write �

x;y

for an arbitrary CSP{agreement between

two runs, and �

x;y

for the largest such, the existence of which is guaranteed

by the previous proposition. Collections of such will be written f�

x;y

g and

f�

x;y

g.

We will use the maximal CSP{agreement �

x;y

to de�ne a CSP

glueing between two treesse85yv9u(7eaTd
(�)Tj[0.rG8.y)-15000.3(the)-16000uciontnteoleraduplictiog



between the AN{categories jY jX and jXjY as follows. (We write x

y

for

the run x in the y{indexed copy of X .)

The component 

y;x

(x

0

y

; y

0

x

): it will be given by �rst passing to

x by �(x

0

; x), thence to y via the CSP agreement �

x;y

, thence to y

0

via

�(y; y

0

):



y;x

(x

0

y

; y

0

x

) = �(y; y

0

) � �

x;y

� �(x

0

; x)

Proposition 40. For any two trees X and Y, 

y;x

: yX �7! xY is a

glueing.

We have shown that the individual components of � are glueings.

It is also true that � as a whole is:

Proposition 41. For any two trees, X and Y, � : jY jX �7! jXjY is a

glueing.

The e�ect of the duplication can be seen by reconsidering a pre-

vious example:

Example 42. For our previous problematic example, 15, we get the glued

forest shown in �gure 6.

Notice that



De�nition 43. The category whose objects are triples (X ;Y; f�

x;y

g) with

X and Y are trees and f�

x;y

g is a collection of CSP glueings between runs

x 2 X and y 2 Y , and whose arrows (X ;Y; �) ! (X

0

;Y

0

; �

0

) are pairs

of AN{functors F : X ! X

0

, G : Y ! Y

0

not decreasing glueing, will be

written CSP(Tree

2

).

Again, we clearly have a forgetful functor U : CSP(Tree

2

) !

Tree

2

, and identical reasoning to that used in proposition 34 shows that

; : Tree

2

! CSP(Tree

2

) (which assigns the empty CSP{agreement to

all runs) is its left adjoint. There is also a right adjoint:

Theorem 44. The functor K : Tree

2

! CSP(Tree

2

) de�ned by

K : (X ;Y) 7�! (X ;Y; f�

x;y

g)

is right adjoint to U .

In summary, then, we have the following adjointness

CSP(Tree

2

)

K

 �

�!

 �

;

Tree

2

whereK is right adjoint to U is right adjoint to ;. This gives a satisfactory

account of two{way process synchronisation: the obvious generalisation to

CSP(Tree

n

) then smoothly treats multiway synchronisations.

6. Concluding Remarks

The programme of enriched category theory, at least for Lawvere

[

14

]

, is to seek out base categories enrichment over which will describe a

variety of mathematical structures. The basic machinery of enrichment,

in a particular case, is seen giving a generalised logic of the situation.

Here we have presented an instance of this scheme, de�ning a category AN

such that AN{categories are descriptions of the behaviour of processes.

Process synchronisation has been characterised as a bimodule in AN{Cat,

and maximal glueing, corresponding to maximal synchronisation, has been

shown to enjoy a simple universal characterisation.

There have been several other categorical accounts of process

algebra, the work of Bednarczyk

[

1

]

and Winskel et al.

[

17, 23

]

being par-

ticularly notable. These workers, though, give an account relative to an

arbitrary synchronisation algebra rather than geared speci�cally to syn-

chronisation on common actions. This, of necessity, makes their account
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less speci�c and less tightly characterised than ours. It is clear that there

are many categories of interest to the concurrency theorist: we merely

hope to have added to the list.
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