
Bisimulation Congruences in Safe Ambients

Massimo Merro and Matthew Hennessy

Abstract. We study a variant of Levi and Sangiorgi's Safe Ambients (SA) enriched

with passwords (SAP). In SAP by managing passwords, for example generating new

ones and distributing them selectively, an ambient may now program who may migrate

into its computation space, and when. Moreover in SAP an ambient may provide

di�erent services depending on the

2 Massimo Merro and Matthew Hennessy

in which, now, n may exercise its capability to dissolve the boundary

k[: : :], giving rise to

n[R

1

j R

2

j P j m[: : :]]

Alternatively the sub-ambient m may exercise its capability to move out-

side n, outhni, in which case the system will have three concurrent ambi-

ents:

k[: : :] j n[openhki:P] j m[Q

1

j Q

Bisimulation Congruences in Safe Ambients 3

arbitrary contexts. In short the bisimulation relation over the lts char-

acterises some naturally de�ned contextually de�ned behavioural equiva-

lence, [14, 1]. This is the topic of the current paper:

Can we de�ne an lts based operational semantics for ambients,

and an associated bisimulation equivalence, which can be justi�ed

contextually ?

In [9] it has been argued that the calculus MA, as given in, for example

[6], is qualitatively di�erent from more standard process calculi such as the

Picalculus[12]. It is di�cult for ambients to control potential interference

from other ambients in their environment. For example ambients are

always under the threat of being entered by an arbitrary ambient in its

environment, and they have no means to forbid such actions if they so wish.

To armour ambients with the means to protect themselves, if necessary,

from the inuence of their environment the authors add co-capabilities, for

each of the standard ambient capabilities; this idea of every action having

a co-action is borrowed from process calculi such as CCS or the Picalculus.

Thus, for example, an ambient may now only exercise the capability inhni,

if the ambient n is also willing to exercise the corresponding co-capability

inhni. In

m[inhni:Q

1

j Q

2

] j n[P]

the ambient m can migrate inside n if P has the form inhni:P

1

j P

2

, in

which case the system evolves to

n[m[Q

1

j Q

2

] j P

1

j P

2

]

That is m may only enter n if n allows it. The resulting calculus, called

Safe Ambients, abbreviated SA, is shown to have a much more satisfactory

equational theory, and numerous equations, often type dependent, may

be found in [9]. Nevertheless these equations are expressed relative to a

contextually de�ned equivalence. Establishing them requires, for the most

part, reasoning about the e�ect arbitrary contexts may have on ambients.

We extend the syntax of ambients even further, by allowing capabilities

to be de�ned relative to passwords. Co-capabilities give a certain amount

of control to ambients over the ability of others to exercise capabilities on

them; inhni can only be exercised if n is also willing to perform inhni.

However n has no control over who obtains the capability inhni. But if we

generalise capabilities (and co-capabilities) to contain an extra component

then this extra component may be used by n to exercise control over,

and di�erentiate between, di�erent ambients who may wish to exercise a

capability. Now an ambient wishing to migrate inside n must exercise a

capability of the form inhn; hi, for some password h; but the capability will

4 Massimo Merro and Matthew Hennessy

only have an e�ect if n exercises the corresponding co-capability, with the

same password, inhn; hi. By managing passwords, for example generating

new ones and distributing them selectively, n may now program who may

migrate into its computation space, and when. Moreover an ambient may

provide di�erent services depending on the passwords exhibited

Bisimulation Congruences in Safe Ambients 5

example, the ambient

m[inhni:P]

now has the ability to enter an ambient named n, because its body has

the capability to perform the action inhni. So our lts will also require

actions of the form enterhni, whose e�ects are in general higher-order.

When such an action is performed we must prescribe

� which ambient enters n

� what residual code remains behind.

For example in the system

m[inhni:P] j Q

if the action enterhni is performed the migrating ambient is m[P], while

the residual code is Q. In general the migrating ambient and the residual

code may share private names and therefore to formalise actions such as

enterhni we use a kind of concretion, [11, 16, 9]. Such actions will have

the form

P

`

enterhn

6 Massimo Merro and Matthew Hennessy

Table 1 The Calculus SAP

Names: n; h; : : : 2N

Processes:

P ::= 0 nil process

�

�

P

1

j P

2

parallel composition

�

�

�nP restriction

�

�

C:P pre�xing

�

�

n[P] ambient

�

�

!C:P replication

Capabilities:

C ::= inhn; hi may enter into n

�

�

outhn; hi may exit out of n

�

�

openhn; hi may open n

�

�

inhn; hi allow enter

�

�

outhn; hi allow exit

�

�

openhn; hi allow open

this idea we de�ne a new lts where now all actions take the form P

�

��! Q,

that is all the residuals are processes; essentially concretions are eliminated

by applying them to the processes which previously formed part of our

de�nition of higher-order bisimulation. The main result of the paper is

that, in SAP, the resulting (weak) bisimulation equivalence � coincides

with

�

=

.

Most of the paper uses a pure form of ambients, without any com-

munication. In Section 5 we show that our results extend to a calculus

in which messages can be sent and received within ambients, similarly to

[6, 9]. In the following section we give some examples which indicate that

our form of bisimulation may play a useful role in reasoning about ambient

behaviour.

The paper ends with Section 7, containing a discussion of our results

and a comparison with related work.

2 The Calculus SAP

The syntax of processes is given in Table 1 and is basically the same as

that in [6], except that each of the original capabilities has a co-capability,

as in [9], and that now each capability has an extra argument h, which

Bisimulation Congruences in Safe Ambients 7

Table 2 Structural Congruence

P j Q � Q j P (Struct Par Comm)

(P j Q) j R � P j (Q j R) (Struct Par Assoc)

P j 0 � P (Struct Zero Par)

�n0 � 0 (Struct Zero Res)

�n�mP � �m�nP (Struct Res Res)

n 62 fn(P) implies �n(P j Q) � P j �nQ (Struct Res Par)

n 6= m implies �n(m[P]) � m[�nP] (Struct Res Amb)

may be looked upon as a password. Note also that we have replicated

pre�xing, rather than full replication, or recursion. Finally for simplicity

we have omitted communication; this will be added in Section 5.

When writing examples we will use the standard conventions for am-

bients; trailing occurrences of 0 are omitted, n[0] will be shortened to

n[] and as usual parallel composition has the lowest precedence among all

operators. We will also frequently write inhni to denote inhn; ni and sim-

ilarly for the other capabilities; in other words we will often use the name

of an ambient as a password. The operator �n is a binder for names,

leading to the usual notions of free and bound occurrences of names, fn(�)

and bn(�), and �-conversion, �

�

. We will identify processes up to �-

conversion. More formally we will view process terms as representatives

of

8 Massimo Merro and Matthew Hennessy

Table 3 Reduction Rules

n[inhm;hi:P j Q] j m[
in
hm;hi:R j S] ! m[n[P j Q] j R j S]

(Red In)

m[n[outhm;hi:P j Q] j R] j outhm;hi:S ! n[P j Q] j m[R] j S
(Red Out)

openhn; hi:P j n[openhn; hi:Q j R] ! P j Q j R
(Red Open)

P � Q Q! R R � S implies P ! S
(Red Str)

which intuitively means that P can evolve to Q in one computation step.

It is de�ned to be the least p-contextual relation which satis�es the axioms

and rule in Figure 3. The axiom (Red In) describes how an ambient n

may migrate into an ambient m m
n

10 Massimo Merro and Matthew Hennessy

Table 4 Labels, Concretions, and Outcomes

Actions: � ::= inhn; hi

�

�

outhn; hi

�

�

openhn; hi

�

�

inhn; hi

�

�

outhn; hi

�

�

openhn; hi

Labels: � ::= �

�

�

�

�

�

enterhn; hi

�

�

enterhn; hi

�

�

exithn; hi

�

�

pophn; hi

�

�

freehn; hi

Concretions: K ::= � ~mhP i

n

Q

Outcomes: O ::= P

�

�

K

and therefore we would have the identity

n[P] �

bad

0

regardless of P .

However the actions above can be considered the basis of further capa-

bilities. For example in the system n[inhmiP:] j Q there is the capability

to enter ambient m. Exercising this capability has a dual e�ect; on the

one hand the ambient n[P] will actually move into the ambient m, on

the other the process Q will remain executing at the point at which the

capability is exercised. In general each of the simple pre�x actions C

will induce di�erent, more complicated capabilities in ambients, and more

generally processes. These will be formulated as actions of the form

P

`

�

��! O

where the range of � and of O, the outcomes, are given in Table 4. These

outcomes may be a simple process Q, if for example � is a pre�x from the

language, or a concretion, of the form

� ~mhP i

n

Q

Here, intuitively, process P represents what must stay inside an ambient n

whereas process Q must stay outside n, and ~m is the set of private names

shared by P and Q.

The rules de�ning our labelled transition semantics, inspired by [9, 3],

are given in Table 5 and Table 6 and are in late style [12]. Let us �rst

examine those induced by the pre�x in, the immigration of ambients. Here

we will ignore the use of passwords as they play no role in our explanations.

A typical example of an ambient m migrating into an ambient n is as

Bisimulation Congruences in Safe Ambients 11

Table 5 Labelled Transition System - Enter and Exit

(Enter)

P

`

inhn;hi

������! P

0

m[P]

`

enterhn;hi

��������! hm[P

0

]i

n

0

(Co-Enter)

P

`

inhn;hi

������! P

0

n[P]

`

enterhn;hi

��������! hP

0

i

n

0

(� In)

P

`

enterhn;hi

��������! �~phP

1

i

n

P

2

Q

`

enterhn;hi

��������! �~qhQ

1

i

n

Q

2

P j Q

`

�

��! �~p�~q(n[P

1

j Q

1

] j P

2

j Q

2

)

if ((fn(P

1

) [fn(P

2

)) \ f~qg) = ((fn(Q

1

) [fn(Q

2

)) \ f~pg) = ;

(Exit)

P

`

outhn;hi

�������! P

0

m[P]

`

exithn;hi

��������! h0i

n

m[P

0

]

(Pop)

P

`

exithn;hi

��������! � ~mhP

1

i

n

P

2

n[P]

`

pophn;hi

�������! � ~m(n[P

1

] j P

2

)

(� Out)

P

`

pophn;hi

�������! P

0

Q

`

outhn;hi

�������! Q

0

P j Q

`

�

��! P

0

j Q

0

follows:

m[inhni:P

1

] j P

2

j n[inhni:Q

1

] j Q

2

�! n[m[P

1

] j Q

1

] j P

2

j Q

2

The driving force behind the migration is the activation of the pre�x inhni,

within the ambientm. It induces a capability in the ambientm to migrate

into n, which we formalise as a new action enterhni. Thus an application

of the rule (Enter) gives

m[inhni:P]

`

enterhni

�������! hm[P]i

n

0

and more generally, using the structural rules

m[inhni:P

1

] j P

2

`

enterhni

�������! hm[P

1

]i

n

P

2

This means that the system m[inhni:P

1

] j P

2

has the capability to enter

an ambient n; if the capability is exercised the ambient m[P

1

] will enter

n while P

2

will be the residual at the point of execution. Of course the

action can only be executed if there is a corresponding co-action enterhni

performed by n. The rule (Co-Enter) allows these to be derived. So for

example we have

n[inhni:Q

1

] j Q

2

`

enterhni

�������! hQ

1

i

n

Q

2

Here, after the action, Q

1

remains inside n, while Q

2

is outside. The

12 Massimo Merro and Matthew Hennessy

communication (� In) now allows these two complementary actions to

occur simultaneously, e�ecting the migration of the ambient m[P

1

] from

its current computation space into the ambient n, giving rise to the original

move above:

m[inhni:P

1

] j P

2

j n[inhni:Q

1

] j Q

2

`

�

��! n[m[P

1

] j Q

1

] j P

2

j Q

2

Note that this is a higher-order interaction, as the ambient m[P

1

] is trans-

ferred between two computation spaces.

The structural rule (Res) in Table 6 allows the migrating ambient to

share private names with its point of origin, in the same manner as in the

Picalculus. This rule employs the convention that if O is the concretion

� ~mhP i

n

Q, then �rO is a shorthand for � ~mhP i

n

�rQ, if r 62 fn(P), and the

concretion �

14 Massimo Merro and Matthew Hennessy

� If P

`

enterhn;hi

���������! � ~mhP

1

i

n

P

2

then P

1

is an ambient

� If P

`

exithn;hi

��������! � ~mhP

1

i

n

P

2

then P

2

is an ambient.

Proof: By rule induction. �

We end this section with a theorem which asserts that the lts based

semantics coincides with the reduction semantics of Section 2.

Theorem 3.2.

1. If P

`

�

��! P

0

then P ! P

0

.

2. If P ! P

0

then P

`

�

��!� P

0

.

Proof: By transition induction. Part 1 is the most di�cult. It requires

a result describing the structure of a process P and the outcome O for

any action � such that P

`

�

��! O. For

Bisimulation Congruences in Safe Ambients 15

Lemma 4.1. P#

n

i� P

`

freehn;hi

��������! P

0

for some h and P

16 Massimo Merro and Matthew Hennessy

We recall, that by Lemma 4.1, if P#

n

then there exists h such that

P

`

freehn;hi

��������!. Thus, we de�ne a context:

S

h

2

[�]

def

= [�] j openhn; hi:k[r[outhki]]

This is constructed so that whenever r and k are fresh to R then:

{ S

h

2

[R]+

pophki

implies R+

n

{ R+

n

implies 9h: S

h

2

[R]+

pophki

:

This is su�cient to establish Q+

n

.

� � = enter.

Again this is a question of de�ning two appropriate contexts. Let

S

1

[�]

def

= [�] j f [inhn; hi:outhn; ki] j outhn; ki:g[openhgi]

This context has the property that

R+

enterhn;hi

i� S

1

[R]+

g

whenever f; g and k are fresh to R. For the reverse direction we let

S

h

2

[�]

def

= [�] j openhn; hi:g[inhgi]

This has the required property that:

{ S

h

2

[R]+

enterhgi

implies R+

n

{ R+

n

implies 9h: S

h

2

[R]+

enterhgi

:

provided that g is fresh to R.

�

As expected, the use of passwords is fundamental to the above result.

In particular in the the case � = enter the use of the fresh password

k in the de�nition of S

1

[�] is essential. Note also thattocase

Bisimulation Congruences in Safe Ambients 17

� j=

�̂

==) denotes

`

�

��!

�

if � = � and j=

�

Bisimulation Congruences in Safe Ambients 19

arbitrary processW we are required to �nd a move n[Q]

`

enterhm;hi

���������!

K

2

such that K

1

�W S K

2

�W .

As P S Q, we may use induction to �nd aQ

0

such thatQ

`

inhm;hi

�������!

Q

0

and P

0

S Q

0

. We may now letK

2

= hQ

0

i

n

0 as n[Q] j=

enterhm;hi

=========)

K

2

and since S is preserved by parallel composition and ambient

constructor, we get K

1

�W = n[P

0

j W] S n[Q

0

j W] = K

2

�W ,

as desired.

{ Let n[P]

`

pophn;hi

�������! �~p(n[P

1

] j P

2

) because P

`

exithn;hi

��������! � ~phP

1

i

n

P

2

=

K

1

. As P S Q, by induction it holds that for all processes W

there exists K

2

= �~qhQ

1

i

n

Q

2

such that Q j=

exithn;hi

========) K

2

and

K

1

� W S K

2

� W . So, choosing the particular case when W

is 0 we have n[Q]

`

pophn;hi

�������! �~q(n[Q

1

] j Q

2

) and � ~p(n[P

1

] j P

2

) �

K

1

� 0 S K

2

� 0 � �~q(n[Q

1

] j Q

2

), as desired.

{ The inductive cases, for both kinds of actions, are straightforward.

� The remaining case, when �nP S �nQ because P S Q, is straight-

forward and left to the reader.

�

In the sequel of the paper it will be useful to have a form of internal

choice.

Definition 4.9. Given any processes P and Q we have

P �Q

def

= �r(openhri:P j openhri:Q j

20 Massimo Merro and Matthew Hennessy

The law above is true for barbed congruence, as we can prove using results

of Section 4.3, but it is not for delay bisimilarity. Indeed, the action inhai,

leading the right hand side to !inhai:(inhbi � inhci) j inhci, cannot be

matched by the left hand side without performing a � action after inhai.

�

4.3 Ambient bisimilarity

As pointed out in the proof of Proposition 4.10 the problem of delay

bisimilarity is that, by de�nition, weak actions j=

�

==) do not allow � moves

after the visible action �. In this section, we give a slightly di�erent lts

�! de�ned in terms of

`

�!, which allows us to de�ne weak actions

�

==)

where � moves can follow visible actions. Actions, between processes, of

the form P

`

�

��! P

0

, remain una�ected. The only modi�cation involves

higher-order actions, that is, actions of the form P

`

�

��! K which will also

be transformed into actions between processes; the resulting lts is in early

style.

Definition 4.11 (Ambient Transitions). Letm be an arbitrary name

and R an arbitrary process. Then:

� P

enterhn;hiR

����������! K �R if P

`

enterhn;hi

���������! K

� P

enterhn;him[R]

������������! K �m[R] if P

`

enterhn;hi

���������! K

� P

exithn;hiR

���������! K �R if P

`

exithn;hi

��������! K

� P

�

��! P

0

if P

`

�

��! P

0

These transitions give rise to weak transitions in the standard manner:

�

�

==) denotes

�

��!

�

�

��!

�

��!

�

�

�̂

==) denotes

�

��!

�

if � = � and

�

==) otherwise.

Bisimulation Congruences in Safe Ambients 21

In order to emphasize the di�erences with the proof for delay bisimilarity

we focus on one case, when P j R S Q j R because P S Q. Here

we now carry out an inductive analysis on the transition P j R

�

��! O.

The most interesting case is when � = � . We recall that P j R

�

��! O if

P j R

`

�

��! O.

Let us consider the case when P j R

`

�

��! O because P

`

enterhn;hi

���������! K

1

and

R

`

enterhn;hi

���������! �~rhm[R

1

]i

n

R

2

, with O � �~r

�

(K

1

�m[R

1

]) j R

2

22 Massimo Merro and Matthew Hennessy

Lemma 4.15. Let C[�] be a static context, R a process, n a name, and

h

1

; h

2

fresh names. Then:

1. If C[SPY

a

hn; h

1

; h

2

; Ri]

�

��! P and P +

pophn;h

i

i

, i 2 f1; 2g, then there

is a static context C

0

[�] such that

� P = C

0

[SPY

a

hn; h

1

; h

2

; Ri] and

� C[R]

�

��! C

0

[R].

2. If C[m[SPY

b

hn; h

1

; h

2

; Ri]]

�

��! P and P +

pophn;h

i

i

, i 2 f1; 2g, then

there is a static context C

0

[�] such that

� P = C

0

[m[SPY

b

hn; h

1

; h

2

; Ri]] and

� C[m[R]]

�

��! C

0

[m[R]].

Proof: By transition induction. �

By virtue of Theorem 4.4, when proving that � and

�

=

coincide it

su�ces to show that � and

�

=

pop

coincide. To this end we need a last

lemma which allows us to remove the spy cages SPY

a

hn; h

1

; h

2

; �i and

SPY

b

hn; h

1

; h

2

; �i.

Lemma 4.16 (cutting lemma). Let C

1

[�] and C

2

[�] be static contexts,

P;Q/R191 0.12 Tf
10.2nrRR161 0.12a

/R191 0.12 Tf
10.2nrRR161 0.12a

;1d
(=)Tj
16 0 Td
(h)Tj
/R191 0.12 Tf
8.28008 2.1-268 0.12 Tf
6.360166 Td
(fresh)Tj
34.8 0 Td
(names.)Tj
49.43
69.3602 0 0 Td
(lemma).)Tj
/R45004 Td
(h)Tj
/R161 0.12 C

0Y

b

h

SPh

1

Td
(n;)Tj
15 0 Td
(h)Tj
/R191 0.12 Tf
8.27969 2.16016 Td
(2)Tj
/R161 0.12 Tf
6.36016 -2.16016 Td
(;)Tj
6.36016 2.16016 Td
89602 0 -48008 4.4 0 Td
(�)Tj
/R121 0.12 Tf
1/R191 0.1Td
(and)Tj
/R187 0.12 T
6.31TJ
2233.84023 Td
(�)Tj
/R121 0.12 0.12 Tf
10.37.1598
15 0 Td
(0 Td
(lemma).)Tj
/R451 01 0.12 Tf
6.48008)Tj
/R161 0.12 Tf
27.9016 0 Td
(C)Tj
/R311 0.12 Tf
11.2801 -5.28008 Td
(0)Tj
/R121 0.12 Tf
4.08Tj
39.8398 0 Td
(SPY)Tj
/R191 0.12 Tf
26.8805 2.16016 Td
(a)Tj
/R187 0.12 Tf
6.48008 -2.16016 Td
(h)Tj
/R161 0.12 Tf
5.51992 0 Td
(n;)Tj
15 0 Td
(h)Tj
/R191 0.12 Tf
8.28008 2.16016 Td
(1)Tj
/R161 0.12 Tf
6.48008 -2.16016 Td
(;)Tj
6.36016 0 Td
(h)Tj
/R191 0.12 Tf
8.27969 2.16016 Td
(2)Tj
/R161 0.12 Tf
6.36016 -2.16016 Td
(;)Tj
6.36016 0 Td
(R)Tj
/12j
/R121 0.12 Td
(2)T/R311 0.12 Tf
12lemma).Let C

0

�and�lemma).

C

0

[]needlemma).Let C

0

[m and

SPY

a

hn; h

1

Bisimulation Congruences in Safe Ambients 23

and

�

=

pop

is preserved by restriction we get:

P

�

=

pop

P j �~rR

�

=

pop

�~r(P j R)

�

=

pop

�~r(Q j R)

�

=

pop

Q j �~rR

�

=

pop

Q

as desired. �

Theorem 4.17. Ambient bisimilarity and barbed congruence coincide.

Proof: By Theorem 4.13 and Lemma 4.1 ambient bisimilarity is con-

tained in barbed congruence. As to the completeness part, by Theo-

rem 4.4, it su�ces to prove that the relation

S = f(P;Q) : P

�

=

pop

Qg

is an ambient bisimilarity up to �.

Let us �rst consider the three possible higher-order actions P

�

��! O:

1. Let P

enterhn;hiR

����������! P

0

because P

`

enterhn;hi

���������! K

1

= � ~phP

1

i

n

P

2

where

P

0

= C

1

[R] and C

1

[�] = �~p(n[[�] j P

1

] j P

2

). We want to conclude

that there is a matching move Q

enterhn;hiR

==========) Q

0

with P

0

S Q

0

. We

de�ne:

C

�R

[�]

def

= [�] j n[inhn; hi:(SPY

a

hn; h

1

; h

2

; Ri � a[outhn; h

3

i])

24 Massimo Merro and Matthew Hennessy

Examining the above reductions sequence from C

�R

[Q] we know that

Q =)

enterhn;hiR

����������! C

0

[R]. We also know that C

0

[(SPY

a

hn; h

1

; h

2

; Ri)]

�

==)

C

2

[(SPY

a

hn; h

1

; h

2

; Ri)]. Repeated application of Lemma 4.15(1) gives

C

0

[R] =) C

2

[R], and therefore we have the required corresponding ac-

tion Q

enterhn;hiR

==========) C

2

[R].

2. Let P

exithn;hiR

���������! P

0

because P

`

exithn;hi

��������! K

1

= �~phP

1

i

n

P

2

where

P

0

= C

1

[R] and C

1

[�] = � ~p(n[[�] j P

1

] j P

2

). Again we want to conclude

that there is a a matching move such that Q

exithn;hiR

=========) Q

0

with

P

0

S Q

0

. The proof strategy is the same as in the �rst case except

that here we use the context

C

�R

[�]

def

= n[[�] j SPY

a

hn; h

1

; h

2

; Ri] j

outhn; hi:(a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

with a; b; h

i

fresh. Again we have C

�R

[P]

�

=

pop

C

�R

[Q]. So, if

C

�R

[P]

�

��!

�

��! C

1

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

then there is a process Z such that

C

�R

[Q] =) Z and C

1

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

�

=

pop

Z.

As a consequence, Z+

pophn;h

1

i

, Z+

pophn;h

2

i

, Z+

popha;h

3

i

, and Z 6+

popha;h

4

i

.

This implies that in the reductions sequence C

�R

[Q] =) Z the pre�x

outhn; hi is consumed. More precisely, by Lemma 4.15(1) there exist

static contexts C

0

[�]; C

00

[�] and C

2

[�] such that:

C

�R

[Q] = n[Q j SPY

a

hn; h

1

; h

2

; Ri] j

outhn; hi:(a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

=)

�

��! C

0

[SPY

a

hn; h

1

; h

2

; Ri] j (a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

=)

�

��! C

00

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

=) C

2

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

= Z

By Lemmas 4.16(1) and 4.16(3), we have C

1

[R]

�

=

pop

C

2

[R].

As in the �rst case we can now show that the required Q

0

is C

2

[R];

analysing the above reduction and applying Lemma 4.15(1) we obtain

Q

exithn;hiR

=========) Q

0

, as required.

3. Let P

enterhn;him[R]

that2] Let P

Bisimulation Congruences in Safe Ambients 25

time we use the context

C

�m[R]

[�]

def

= [�] j m[inhn; hi:(SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i)]

with h

i

fresh. Arguing as usual from C

�m[R]

[P]

�

=

pop

C

�m[R]

[Q], we

know that since

C

�m[R]

[P]

�

��!

�

��! C

1

[m[SPY

b

hn; h

1

; h

2

; Ri]];

there is a process Z such that

C

�m[R]

[Q] =) Z and C

1

[m[SPY

b

hn; h

1

; h

2

; Ri]]

�

=

pop

Z.

As a consequence, Z+

pophn;h

1

i

, Z+

pophn;h

2

i

, and Z 6+

pophn;h

3

i

. This im-

plies that in the reductions sequence C

�m[R]

[Q] =) Z the pre�x inhn; hi

is consumed. More precisely, this time by Lemma 4.15(2), there exist

static contexts C

0

[�]; C

00

[�] and C

2

[�] such that:

C

�m[R]

[Q] = Q j m[inhn; hi:(SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i)]

=)

�

��! C

0

[m[SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i]]

=)

�

��! C

00

[m[SPY

b

hn; h

1

; h

2

; Ri]]

=) C

2

[m[SPY

b

hn; h

1

; h

2

; Ri]]

= Z

By Lemma 4.16(2) we have C

1

[m[R]]

�

=

pop

C

2

[m[R]].

We now have the required Q

0

, namely C

2

[m[R]]. An analysis of

the above reductions gives Q =)

enterhn;him[R]

������������! C

0

[m[R]], and from

Lemma 4.15(2) we know that C

0

[m[R]] =) Q

0

. We therefore have the

required move Q

enterhn;him[R]

============) Q

0

.

The remaining cases concern the simpler actions of the form P

�

��! P

0

where P

0

is a process; there are eight cases in all. Here it will be useful to

write h�h

0

as an abbreviation for f [�z(z[outhf; hi])]�f [�z(z[outhf; h

0

i])]

where f is always assumed to be fresh.

� Let P

inhn;hi

������! P

0

. We want to conclude that there is Q

0

such that

Q

inhn;hi

======) Q

0

and P

0

S Q

0

. We de�ne:

C

�

[�]

def

= a[[�] j outhn; h

1

i:openhai] j n[inhn; hi] j

outhn; h

1

i:openhai:(h

2

� h

3

)

with a; h

i

fresh. From P

�

=

pop

Q we know that C

�

[P]

�

=

pop

C

�

[Q]. So,

if

C

�

[P]

�

��!

�

��!

�

��!

�

��! P

0

j n[] j h

2

�

=

pop

P

0

j h

2

then there is a process Z such that P

0

j h

2

�

=

pop

Z. As a consequence,

26 Massimo Merro and Matthew Hennessy

Z +

pophf;h

2

i

and Z 6+

pophf;h

3

i

. This implies that in the reductions se-

quence C

�

[Q] =) Z the whole context C

�

[�] is consumed (up to

�

=

pop

)

except for h

2

. More precisely, noticing that n[]

�

=

pop

0 (see Section 6),

there exist Q

1

, Q

2

, Q

3

; Q

0

such that:

C

�

[Q] = a[Q j outhn; h

1

i:openhai] j n[inhn; hi] j

outhn; h

1

i:openhai:(h

2

� h

3

)

=)

�

��! n[a[Q

1

j outhn; h

1

i:openhai]] j

outhn; h

1

i:openhai:(h

2

� h

3

)

=)

�

��! a[Q

2

j openhai] j n[] j openhai:(h

2

� h

3

)

=)

�

��! Q

3

j n[] j (h

2

� h

3

)

=) Q

0

j n[] j h

2

= Z

�

=

pop

Q

0

j h

2

where Q =)

inhn;hi

������! Q

1

=) Q

2

=) Q

3

=) Q

0

. By Lemma 4.16(3) we

can conclude that P

0

�

=

pop

Q

0

, as desired.

� Let P

inhn;hi

������! P

0

Bisimulation Congruences in Safe Ambients 27

there exist Q

1

, Q

2

, and Q

3

such that:

C

�

[Q] = n[Q j openhn; h

1

i:(h

2

� h

3

)] j a[inhn; hi:outhn; h

4

i] j

outhn; h

4

i:openhn; h

1

i

=)

�

��! n[Q

1

j openhn; h

1

i:(h

2

� h

3

) j a[outhn; h

4

i]] j

outhn; h

4

i:openhn; h

1

i

=)

�

��! n[Q

2

j openhn; h

1

i:(h

2

� h

3

)] j a[] j openhn; h

1

i

=)

�

��! Q

3

28 Massimo Merro and Matthew Hennessy

with h

1

and h

2

fresh.

�

We believe that the distinguishing contexts in the proof above can be

de�ned without the use of passwords, except when � is a enter action. In

this case however the use of fresh passwords is essential. In order to test

that a process can allow entry to an ambient we can send it an ambient

which contains a fresh password. Probing for this fresh password ensures

that the ambient we have sent has indeed been accepted. Without fresh

passwords there would be no distinguishing feature of the ambient sent

which could be used in the probe.

Note also that our rules for out, di�erent from those in [9], have played

a crucial role in the distinguishing contexts for both enter and in. The

alternative semantics for outhni given in [9] uses an auxiliary action ?n

but it is di�cult to conceive of a distinguishing context for this action.

5 Adding Communication

Both Mobile Ambients, [6], and Safe Ambients, [9], allow local communi-

cation inside ambients. The basic idea is to have an output process such

as hEi, which outputs the message E, and an input process such as (x):Q

which on receiving a message binds it to x in Q which then executes. The

basic reduction rule therefore takes the form

(x):Q j hEi �! Qf

E

=xg j P

In this section we show that our results can be extended to such a message-

passing language.

The syntax of our extended language is given in Table 7. The pre�xing

operator C:P of Section 2 is generalised to G:P , where G is a syntactic

category of guards. This may take the form

� E:P , a direct generalisation of C:P . Here E is any path, or sequence, of

capabilities. These paths will be the messages allowed in our systems.

� hEi:P , representing the synchronous output of the message E; the

process P can not be executed until the message E has been consumed.

As discussed in [21, 2] this is not unrealistic because communication is

always local.

� (x):Q, representing input of a message to be bound to x in Q.

We now have variables in our language, with the construct (x):Q a

binding construct for x. This gives rise in the standard manner to the

notions of free and bound variables, fv(�) and bv(�), �-equivalence and

Bisimulation Congruences in Safe Ambients 29

Table 7 The Message-passing Calculus SAP

Names: n; h; : : : 2 N

Variables: x; y; : : : 2 X

Capabilities:

C ::= inhn; hi may enter into n

�

�

outhn; hi may exit out of n

�

�

openhn; hi may open n

�

�

inhn; hi allow enter

�

�

outhn; hi allow exit

�

�

Bisimulation Congruences in Safe Ambients 31

Table 8 Labelled Transition System - Communication

(Output)

�

hEi:P

`

h�i

����! hEiP

(Input)

�

(x):P

`

(E)

����! Pf

E

=

x

g

(Path)

E:(F:P)

`

�

��! Q

(E:F):P

`

�

��! Q

(� Eps)

�

�:P

`

�

��! P

(� Comm)

P

`

h�i

����! �~phEiP

0

Q

`

(E)

����! Q

0

fn(Q

0

) \ f~pg = ;

P j Q

`

�

��! �~p(P

0

j Q

0

)

Definition 5.1 (Barbed Congruence). Barbed congruence,

�

=

is the

largest equivalence relation over arbitrary terms which

� is preserved by contexts

� when restricted to processes is reduction closed

� when restricted to processes is barb preserving.

De�ned in this manner there is an immediate mismatch between

�

=

and the bisimulation equivalence �; the former is de�ned for arbitrary

terms while the latter only applies to processes. However we can

32 Massimo Merro and Matthew Hennessy

This, together with the straightforward extension of Lemma 4.1 to the

message-passing calculus, immediately establishes that � is contained in

�

=

. In fact the converse is also true.

Theorem 5.3. Relations

�

=

and � coincide over arbitrary terms in the

message-passing language.

Proof: For processes the proof that

�

=

is contained in � follows from a

straightforward extension of Theorem 4.4 to the message-passing calculus.

It su�ces to prove that the relation

S = f(P;Q) : P

�

=

pop

Q; P;Q processesg

is a bisimilarity up to �. The main di�erence with respect to the proof of

Theorem 4.17 is that we have to consider the cases for input and output

actions.

� Let P

(M)

����! P

0

; we want to conclude that there is Q

0

such that

Q

(M)

====) Q

0

and P

0

S Q

0

. As a distinguishing context take:

C

�

[�]

def

= [�] j hMi:(h

1

� h

2

)

with h

1

and h

2

fresh.

� Let P

h�iR

�����! P

0

; we want to conclude that there is Q

0

such that

Q

h�iR

=====) Q

0

and P

0

S Q

0

. As a distinguishing context take:

C

�R

[�]

def

= [�] j (x):(SPY

a

ha; h

1

; h

2

; Ri � a[b[outha; h

3

i]]))

with a; b; h

i

fresh.

So we can conclude that for processes P

�

=

Q implies P � Q.

Now consider two arbitrary terms P;Q such that P

�

=

Q. We need

to show that P� � Q� for any substitution �. Let x

1

; x

2

; : : : ; x

n

be

all the variables free in both P and Q. From P

�

=

Q we know that

Bisimulation Congruences in Safe Ambients 33

For example the transmission of an ambient name into a static context,

as in

hni:P j (x):� ~m(x[R] j Q)

�

��! P j � ~m(n[R] j Q)

with x 62 fv(Q

34 Massimo Merro and Matthew Hennessy

Routable packets: In [6], Cardelli and Gordon present a protocol to

route a packet to various destinations. The content P and the destination

E are contained in an ambient route. The act of sending P to destination

E is realized by the following steps. Ambient route enters inside the packet

and is opened. This liberates a message hEi, which is then consumed so

that the path E can be executed. At the end, the packet, which contains

P , has reached the destination. Here is the program in Mobile Ambients:

PKT

def

= pkt[!(x):x j !openhroutei] (the packet)

hP;Ei

def

= route[inhpkti:hEi j P] (P is routed to destination E)

As already pointed out in [9], the protocol above works only under

severe constraint on process P and on the environment. Possible dangers

are:

1. process P may interfere with the path to follow;

2. two routers might enter pkt and interfere with the path to follow;

3. pkt and route might be opened by the environment.

These three problems are addressed in [9] by providing a new protocol

along the lines of the taxi protocol in [4]. Below we adapt Levi and San-

giorgi's protocol making use of passwords. We replace hP;Ei with hP;E; ki

where k represents the password that must be used by the target ambient

to open, and therefore access, the desired packet. Passwords allows the

target ambient to distinguish between di�erent packets addressed to it.

For the sake of simplicity we rename ambients pkt and route with p and

r, respectively. Moreover, as in [6], to avoid interferences from P on the

path to follow, we enclose P in an ambient d.

PKT

def

= !p[inhpi:openhri:(x):x]

hP;E; ki

def

= (�d)r[inhpi:openhri:hE:openhdii:d[openhdi:openhp; ki:P]]

Notice that in our protocol, unlike [6, 9], the ambient p is replicated to

increase the parallelism. Now, an ambient p represents a one-time \enve-

lope" to deliver a package P at destination E. The \envelope" p is opened

by the recipient by means of the password k. Notice that this example

uses full replication but it can be easily rewritten in terms of replicated

pre�xing.

Crossing a Firewall A protocol is discussed in [6] for controlling

accesses through a �rewall. Again our version is inspired by that in [9]

but now passwords are used. Ambient f represents the �rewall and h

f

is

Bisimulation Congruences in Safe Ambients 35

the password to cross it; ambient a represents a trusted agent inside which

is a process Q that is supposed to cross the �rewall. h

a

is the password

to access a. The �rewall sends into the agent a pilot ambient k with the

ability inhf; h

f

i to enter the �rewall. The agent acquires the capability

by opening k and then enters f . The process Q carried by the agent is

�nally liberated inside the �rewall by the opening of ambient a. Here is

the protocol:

FW

def

= �h

f

�

f [inhf; h

f

i:openhai:P j

k[outhf; h

f

i:inha; h

a

i:openhki:hinhf; h

f

ii]] j

outhf; h

f

i

�

AG

def

= a[inha; h

a

i:openhki:(x):x:openhai:Q]

Note that here, unlike [9], the names f an a, of the �rewall and agent

respectively, can

36 Massimo Merro and Matthew Hennessy

movements of secret ambients are not visible in Mobile Ambients while

they are in the presence of co-capabilities.

However in our setting we can prove a law similar to the perfect �rewall

equation:

Theorem 6.1.

(�n

1

)(�n

2

)n

1

[n

2

[P]] � 0

Proof: Again

f

�

(�n

1

)(�n

2

)n

1

[n

2

[P]] ; 0

�

g

is a bisimulation since neither side can perform any external action. �

Here are a collection of laws taken from [9]:

Theorem 6.2.

1. �h(m[inhn; hi:P] j n[inhn; hi:Q]) � �h(n[Q j m[P]])

2. k[m[inhn; hi:P] j n[inhn; hi:Q])] � k[n[Q j m[P]]]

3. �h(openhm;hi:P j m[openhm;hi:Q]) � �h(P j Q)

4. k[openhm;hi:P j m[openhm;hi:Q]] � k[P j Q]

5. �h(n[m[outhn; hi:Q]] j outhn; hi:P) � �h(m[Q] j P)

6. n[hEi:P j (x):Q] � n[P j Qf

E

=xg]

Proof: By exhibiting the appropriate bisimulation. In all cases the

bisimulation has a similar form:

S = f(LHS;RHS)g[�

where LHS; RHS denote the left hand side, right hand side respectively

of the identity. In the proof of part 5 we require the law n[] � 0. �

These laws may now be used to prove our version of crossing a �rewall:

Theorem 6.3. If h

a

62 fn(P) and h

f

62 fn(Q), then:

�h

a

(AG j FW) � �(h

a

h

f

)f [P j Q]

Proof: Similar to the proof of Equation (15) of [9], but now applying

Laws 5, 1, 4, 6, 1, 4 of Theorem 6.2. �

Note that because of the security of the system is only maintained by

keeping the passwords secret, in this law we have to restrict on these,

rather than on the names f and a.

Bisimulation Congruences in Safe Ambients 37

7 Conclusion and Related Work

We have introduced the calculus SAP, a variant of Levi and Sangiorgi's

Safe Ambients enriched with passwords. In SAP by managing passwords,

for example generating new ones and distributing them selectively, an am-

bient may now program who may migrate into its computation space, and

when. Moreover ambients in SAP may provide di�erent services depend-

ing on the passwords exhibited by its clients to enter it.

The main result of the paper is

� an lts based operational semantics for SAP

� a bisimulation based equivalence over this lts which coincides with

barbed

38 Massimo Merro and Matthew Hennessy

no co-capabilities) and this leads to a stuttering phenomena originated

by ambients that may repeatedly enter and exit another ambient. As a

consequence, it is far from trivial to �nd a distinguishing context for ac-

tions like enterhni. Stuttering does not show up in SA and SAP because

movements are achieved by means of synchronisation between a capabil-

ity and a co-capability. However characterisations results for SA, similar

to Theorem 4.17, are very di�cult to prove. The technical problem is

due to the di�culty in conceiving a distinguishing context for actions like

enterhni. Roughly, in order to test that a process can allow entry to an

ambient n a context has to move an ambient m into n. In SAP probing

for this using fresh passwords ensures that ambient m has indeed been

accepted at n. Without fresh passwords there would be no distinguishing

feature of the particular ambient m which could be used in the probe. Al-

ternatively, instead of using passwords, one may think of equipping SA

2

with guarded choice �a la CCS. We believe that in SA with guarded choice

ambient bisimilarity coincides with barbed congruence. The proof that

ambient bisimilarity implies barbed congruence eTj
33.8399 0 Td
(capabil-56
-429.959 17.
(partice)7)]TJ
33.1199 0 Td Td.ongruenupin 0 0 Td2998.60edthor5f t8g

Bisimulation Congruences in Safe Ambients 39

[4] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In 26th An-

nual Symposium on Principles of Programming Languages (POPL) (San Antonio,

TX), pages 79{92. ACM, 1999.

[5] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for

mobile ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POLP-00), pages 365{377, N.Y.,

January 19{21 2000. ACM Press.

[6] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer

Science, 240(1):177{213, 2000. An extended abstract appeared in Proceedings of

FoSSaCS '98 : 140{155.

[7] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the

presence of subtyping. Computer Science Report 2/01, University of Sussex, 2001.

[8] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical

Computer Science, 152(2):437{486, 1995.

[9] F. Levi and D. Sangiorgi. Controlling interference in ambients. Short version

appeared in Proc. 27th POPL, ACM Press, 2000.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{

180, LFCS, Dept. of Comp.

