
4

5

1



Design of Arti�cial Neural Networks Using Genetic

Algorithms: review and prospect

_

Ibrahim Ku�s�cu and Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

Email: ibrahim@cogs.susx.ac.uk christ@cogs.susx.ac.uk

April 30, 1994

Abstract

The design of Arti�cial Neural Networks by Genetic Algorithm is useful in

terms of





The APS contains some �elds to describe the address and identi�cation of the area,

and the size (i.e., number of units) of it. In addition, 'dimension share' parameters

determine the spatial organisation of the units. Since the representation used in Genesis

does not assume a simple fully connected network structure, PSFs may be used to

determine where a speci�c unit can make a connection. In PSFs the identity of the target

area is coded either as an absolute (i.e., target ID itself) or relative address (i.e., position

of the target area relative to current area) mode. Again, the dimension parameters allow

connections only in that localised area. Finally, the degree of connectivity (between 30

to 100 percent) and learning rate parameter of back-propagation are also coded in PSFs.

A two point crossover is modi�ed to allow identi�cation of the points by referring

to the markers in the blueprint. The variable length representation and the modi�ed

crossover seems to allow a much broader space of network architectures to be searched.

This can result in more complex architectures.

This design strategy is used to solve two di�erent problems: digit recognition and

XOR problem. In both cases Genesis has produced reasonable networks and showed

improvements over its initial random structures. But the over all results suggests that

the representation used by Genesis is inadequate. More attention to representation

of connectivity is needed. For example, a typical chromosome contains concatenation

parameters describing the number of layers, size of the layers and how these layers

are interconnected. Due to this abstraction, larger nets can be encoded with small

chromosomes. However this is only true for some particular group of networks. This

method would fail to encode some modular architectures with well de�ned and repeated

groups of neurons.

2.2 The Innarvator System: strong representation

In the Innarvator System [31] a layered feed-forward network of N units is represented

by a connectivity constraint matrix with dimensions Nx(N + 1). Each of the values

of the matrix speci�ed by (Column, Row) indices speci�es the nature of the constraint

of connection from one unit to another. The constraints can be either none (indicated

by a zero), learnable (L), learnable but limited to positive values (L+) or learnable but

limited to negative values (L-). The rows of the matrix are successively concatenated

to form a bit string representation of a network. The following �gure shows an example

of a constraint matrix representing a 5 unit network (2 input and single output unit).

The last column (i.e. the N + 1th) in the matrix speci�es the threshold biases of the

units.

The representation used clearly de�nes the layers of the network and, thus, the

translation from genotype to phenotype can be more easily interpreted. The crossover

operator applied in this design strategy involves selecting a random row of the constraint

matrix and swapping all the entries in that row between the parents. This is the simplest

and the safest way of applying the crossover operator since any row contains a



 000000 000000110001110001001101
0 1

2 3

4

From Units :  1  2  3  4  5  bias
1    0  0  0  0  0   0 
2    0  0  0  0  0   0   
3    L  L  0  0  0   L   110001
4    L  L  0  0  0   L  

001101

 000000

001101
4    0  0  L  L  0   L   

To Units

The bit string

 000000

Figure 1: Encoding for XOR problem using strong representation (taken from [31]).

problem. The results have shown that such genetic based design can discover successful

architectural solutions with faster learning of the tasks at hand. However, it is limited

to encode a �xed number of neurons. It gives a chromosome of length n

2

for a network

of n units. If the number of the units gets large the search space becomes too big.

Moreover if the weights are also encoded then the crossover operation may result in

non-functional o�-springs: the structural/functional problem pointed out by [37].

3 Generative Strategies

3.1 Kitano's Grammar Encoding method

A system developed by Kitano [27] employs a di�erent approach encoding ANN architec-

tures. It uses a graph-generation grammar which can encode regular connectivity pat-

terns with shorter chromosomes. Basically, it involves encoding a set of rules which can

generate the ANN. Kitano argues that previous design strategies encode ANN con�gu-

rations directly onto the chromosome and therefore require longer chromosome length

and larger search space. As the size of the networks grows the time it takes to converge

to a near-optimal con�guration will increase. So, they are not suitable for designing

large networks. Besides, these methods assume a rigid, one-to-one correspondence be-

tween the connectivity patterns and the generic information. This creates a substantial

di�culty in encoding a network with repeated patterns and complex internal structure.

Therefore, they are also biologically less plausible with respect to morphogenesis of the

neural system.

In his design strategy Kitano's grammar generates a family of matrices of the size

2

k

. The elements contained in these matrices are some characters of a �nite alphabet.

A larger matrix is developed using rewrite rules corresponding to these characters. This

is translated to a connectivity matrix which describes the structure of an ANN.

Kitano's grammar encoding method is di�erent from the previous methods where

the structure of the network is not directly encoded in the chromosome. Rather, this

method uses a set of re-write rules encoded in the chromosome to generate networks.

It is based on Graph L-system which is an extension of Lindenmayer's L-system [28]

[29]. Figure 2 shows the generation of a typical XOR network using Kitano's graph

generation system.

The followings are the rules used in developing the connectivity matrix for the XOR

network. Starting from the initial state "S" the graph is developed by rule-matching in

4



cpaa
acae
aaaa
aaab

0 1

2 3

7

  (Connectivity Matrix)

00000000
00000000

00000001

00000000

01110000
00100001
00010001

10110000

S AB
CD

 Initial       Cycle 1        Cycle 2                Cycle 3               XOR Network

Figure 2: Generation of XOR graph (taken from [27].

each cycle.

A B

S --> C D

c p a a a a a a

A --> a c B --> a e C --> a a D --> a d

0 0 0 0 1 0 0 1 1 1

a --> 0 0 b --> 0 1 c --> 0 0 e --> 0 1 p --> 1 1

For example, in the �rst cycle start symbol 'S' is re-written using the relevant rule.

There after, for every symbol at the right hand side of �rst rule, the relevant rule is

processed. At the end the connectivity matrix is developed which shows the existence

of a connection between two units by a "1" and the non-existence of a connection with

a "0".

A typical chromosome representing a network has two parts: a variable and a con-

stant part. The constant part does not change and contains a set of static rules that

are used to re-write symbols. The genetic algorithm is only applied to the variable part

to acquire rules through a selection process. Since the constant part is not involved in

the recombination and mutation processes, the length of the variable part constitutes

the chromosome length. Each of these parts are divided into some fragments. Each

fragment is made up of �ve bits representing a rule, in which the �rst bit represents the

left-hand-side of a rule and the rest represent the right-hand-side of a rule. For example,

the �rst rule

AB

S --> CD

(among the rules above) would be represented as follows:

5



S A B C D

In order to ensure that a cell division will always take place, the beginning of the

chromosomes will always contain "S"; the initial state. The variable part contains

symbol-generating rules in the range between "A" to "p" and the constant part contains

pre-encoded re-write rules of symbols from "a" to "p".

The grammar encoding system is tested on XOR, 4-X-4 and 8-X-8 encoding problems

using the back-propagation learning rule on feed forward networks.

The results of several experiments showed that the grammar encoding method con-

verges much faster than direct encoding methods. Also it creates more regular network

connections than direct encoding methods would normally do. This means that the

grammar-encoding system shows a better scaling property and ability to generate more

complex networks. Finally, it is biologically more plausible since the connectivity infor-

mation is encoded in the chromosome in a more 
exible manner.

Although with the grammar encoding method the same abstraction of the rules can



This strategy is biologicallymore plausible and e�cient than matrices. The language

used to describe network structures is more elegant and compact and suitable for the

genetic algorithms. It also allows for coding of the weights. Various properties of this

strategy have been formalised by Gruau in [14]. Some of these can be summarised as

follows:

1. Completeness: any network can be encoded using the CE strategy.

2. Compactness: the ANN representations created by CE and manipulated by the

GA are of minimal size. This ensures a reduction in the genetic search space.

3. Closure: the process of CE is closed under GA. It always produces meaningful

structures, for either acyclic or recurrent neural networks, via the reproduction

process.

4. Modularity: for larger decomposable networks, the code of the network is the

concatenation of the codes of subnetworks. This result in formation of the building

blocks which can be used in several di�erent places in a typical ANN structure.

It also implies more regular ANN structures.

5. Scalability: the complexity of the problem is not re
ected in the representation

schema. A family of ANNs can be encoded with a �xed size code.

6. Power of expression: the CE strategy can be used to encode both the architecture

and the weights.

3.3 More Generative Methods

In [5] a combination of L-systems, production rules and the GA is used to design modular

ANNs. The system uses L-systems as a basis for re-writing production rules which

constitute string representation of the network topologies. Thus, a chromosome encodes

an ANN structure in the form of production rules. The GA is used to evolve a population

of these representations. The �tness of each population member is determined by the

residual error after a certain amount of back-propagation training.

Another system, which is also inspired by the Kitano's work is presented by Voigt

et al. in [16] [17]. In this approach a stochastic L-system is used. Although the

basic algorithm involves a grammar-encoding schema similar to that of Kitano's, the

production rules used are probability-dependent. This aspect has been shown to be

useful in preventing the generation of large numbers of redundant production rules.

After the network structure is generated in the same way as it is in Kitano's system,

the sub-networks are iteratively and randomly modi�ed. Sub-networks are chosen in a

probabilistic manner. This corresponds to an individual development process. The GA

is applied to a population of individuals who have passed through this process. This

strategy also uses feed-forward network structures with the back-propagation learning

rule. The �tness criterion applied is interesting: it is determined by mixing learning-

error, classi�cation-error, number of training iterations, number of connections, and

minimal and maximal path-length in the network structure.

Finally, another generative method presented in [45, 43, 44] uses emergent modelling

to construct ANNs within an incremental, comprehensive and biologically plausible life

cycle of development, plasticity, natural selection and genetic changes. The ANNs

are represented by a set of production rules describing the local behaviors. They are

organised hierarchically. At the lowest level are cells with their connections; next comes

the individual with its behavior and, at the top level ,the environment encloses all.

Similar to Gruau's approach, starting from a single cell, the system controls the division

of the cells and the growth of the connections. The system works in a similar way to

7



the knowledge based systems. This strategy can encode feed-forward networks as well

as recurrent networks. However, the use of GAs for rule-generation and recombination

is limited.

4 Other Designs

There are quite a number of works in which ANNs are created and evolved as part of

speci�c research interest. These either adapt the design strategies mentioned in this

paper or create their own. For example, in [7] and [50]





[18] S. A. Harp, T. Samad, and Aloke Guha. Toward a genetic synthesis of neural networks.

In J.D. Scha�er, editor, Proceedings of Third International Conference on Genetic Algo-

rithms, 1989.

[19] I. Harvey. Adding species adaptation genetic algorithms:a basis for a conitinuing saga.



[40] J.D. Scha�er, D. Whitley, and L. Eshelman. Introduction. In D. Whitley and J.D.

Scha�er, editors, COGAN-92, Combination of Genetic Algorithms and Neural Network.

IEEE Computer Society Press, 1992.

[41] P. Spiessens and J. Toreek. Massively parallel evolution of recurrent networks: an approach

to temporal processing. In Varela and Bourgie, editors, First European conference on

Arti�cial Life, 1992.

[42] P. M. Todd and G. F. Miller. Exploring adaptive agency ii: simulating the evolution

of asociative learning. In Meyer et al., editor, From animals to animats: simulation of

adaptive behavior, 1991.

[43] Jari Vaario. An Emergent Modeling Method for Arti�cial Neural Networks. PhD thesis,

The University of Tokyo, 1993.

[44] Jari Vaario and Setsuo Ohsuga. Adaptive neural architectures through growth control. In

Cihan H. Dagli, Soudar R.T. Kumara, and Shin, editors, Intelligent Engineering Systems

through Arti�cial Neural Networks, pages 11{16. ASM Press, New York, 1991.

[45] Jari Vaario and Setsuo Ohsuga. An emergent construction of adaptive neural architectures.

Heuristics - The Journal of Knowledge Engineering, 5(2), 1992.

[46] D. Whitley and T. Hanson. Optimizing neural networks using faster, more accurate genetic

search. In J.D. Scha�er, editor, Proceedings of Third iInternational Conference on Genetic

Algorithms, 1989.

[47] D. Whitley and J.D. Scha�er. COGAN-92, Combination of Genetic Algorithms and Neural

Network. IEEE Computer Society Press, 1992.

[48] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks:

optimising connections and connectivity. Parallel Computing, 14:347{361, 1990.

[49] L.D. Whitley, S. Dominic, and R.Das. Genetic reinforcement learning with multilayer

neural networks. In Belew and Booker, editors, Proceedings of Fourth International Con-

ference on Genetic Algorithms, 1991.

[50] A.P. Wieland. Evolving controls for unstable systems. In Touretzky et al, editor, Con-

nectionist Models. Morgan Kaufmann, 1990.

11


