
Why Conditional Approach is Hard to Learn

Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

Email: Chris.Thornton@cogs.susx.ac.uk

Tel: (44)273 678856

December 14, 1994

CSRP 359

Abstract

The paper presents the results of an empirical study in which supervised learning algorithms

were used to train an animat to perform a di�cult navigation task. The results of the study are

explained in terms of a theoretical distinction between two learning-complexity classes.

1 Introduction

Recently there has been increasing interest in the use of learning for the automatic acquisition of

animat behaviors. Such behaviours are typically `choicefull', which means that they entail (or allow

for) a variety of responses in some or all situations. With choicefull behaviours it is convenient to use

reinforcement learning regimes rather than supervised regimes, since without knowing each situation's

correct response it is di�cult to draw up a training set. With `choiceless' behaviours, on the other hand,

each situation does have a correct response. The derivation of a training set and implementation of a

supervised regime is thus possible. In fact, a supervised regime applied to a choiceless behaviour should

always perform at least as well as any reinforcement regime. The only di�erence between the supervised

regime and the reinforcement regime (applied to a choiceless behaviour) is the fact that the feedback

provided by the reinforcement regime is a degraded (e.g., noisy or intermittent) signal of the correctness

of a given action/response. Thus for a reinforcement regime to outperform a supervised regime on a

choiceless behaviour, it would have to be the case that the acquisition performance improves while the

quality of the feedback signal degrades. This is clearly absurd.

The present paper looks at the learning of a choiceless behavior dubbed `conditional-approach' by a

variety of supervised methods. No reinforcement methods were examined on the assumption that they

could not be expected to perform any better than the supervised methods. The behaviour was modeled

in an animat with a simple sensory system and a motor system enabling forward and rotational moves.

The behavior itself, which involves moving in on any small object in the sensory �eld but `standing

clear' of any large object, seems rather straightforward. However, it turns out to be poorly learned by

supervised methods. We explain this `failure-to-learn' using a statistical analysis.

1

The paper is divided into six main sections. This, the �rst section, is an introduction. In the second

section we describe the comparative study, the simulation setup used, the training-data derivation

method and the results obtained. In the third section we review basic methods for analyzing statistical

properties of training sets and make a distinction between two types of generalization e�ect. In the

fourth section we analyze statistical properties of training sets for the conditional-approach behavior

and explain why it is hard to learn. In the �fth section we speculate on the form of general solutions

to the conditional-approach learning problem. In the sixth and �nal section we o�er a summary and

some concluding comments.

2 The comparative study

The empirical basis of the paper is a comparative survey that investigated a behavior called `conditional-

approach'. The production of this behavior in an animat requires a proximity sensing system of some

sort and motor abilities enabling forward and rotational movements. The behavior involves moving in

on any relatively small object in the sensory �eld but standing clear of (i.e., not moving in on) any

large object.

The behavior was investigated using

Figure 3: Conditional-approach behaviour.

10% noise. The amount of drive applied to the two wheels in each simulation step was represented in

the form of two real numbers, also in the range 0.0-1.0. Thus, a full right turn with no forwards motion

would appear in the training set as the pair <1.0,0.0> (given the assumption that the �rst number sets

the drive on the left wheel and the second number the drive on the right wheel).

A sample of training pairs derived for the conditional-approach task is shown in Table 1. Note that

the �rst seven numbers in each row (training pair) are the noisy proximity inputs. These are labeled

v1, v2, v3 etc. The �nal two numbers in each row specify the required amount of drive to be applied

to the two drive wheels. These are labeled d1 (amount of drive to the left wheel) and d2 (amount of

drive to the right wheel). The �rst row shows a case of `standing o�' from a large object: the amount

of drive for both wheels is 0.00. The second row illustrates the default behavioral response (swivel ten

degrees to the right) produced whenever all the proximity inputs are zeros (indicating no object has

been sensed). The swivel e�ect is achieved by setting the amount of drive for the right wheel to be 0.3.

2.4 Algorithms and parameter settings

The use of standard-format training sets enabled us to test the performance of any supervised learning

algorithmon the conditional-approach problem. In practice we tested the performance of a wide range of

algorithms including ID3 [1] and C4.5 [2], feed-forward network learning algorithms of the backpropaga-

tion family including `vanilla' backpropagation [3], a second-order method based on conjugate-gradient

descent [4] and a second-order method based on Newton's method called `quickprop' [5]. We also tested

a constructive network learning method called `cascade-correlation' [5] and a classi�er/genetic-algorithm

combination based on Goldberg's `simple classi�er system' [6].

5

v1 v2 v3 v4 v5 v6 v7 d1 d2

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.00

0.00 0.00 0.81 0.81 0.81 0.79 0.78 0.00 0.00

2.5 Results

The results can be roughly summarized by saying that C4.5 and nearest-neighbors performed better

on the learning task than the connectionist algorithms or the classi�er system, but that none of the

algorithms provided satisfactory performance on this problem. In general, following training the animat

would tend to either approach all objects (large or small) or no objects. It would only very occasionally

produce the desired discrimination between large and small objects.

We measured the success of the training in several ways. First of all we measured conventional error rates

(i.e. proportion of incorrect responses on unseens). However, these �gures give a misleading impression

of success. The majority of responses in the conditional-approach behavior do not entail making

the crucial discrimination between large and small objects. They merely involve continuing rotatory

behavior or moving further towards a small and/or distant object. A better performance measure is

provided by sampling the frequencies with which the animat actually arrives at large and small objects.

The former frequency we call the `nip frequency', the latter the `meal frequency'. These frequencies

tend to show the extent to which the animat's behavior embodies the necessary size discrimination.

Our main results are summarized in Table 2. The �gures in the `hand-sim' row show the performance

of the animat running under the control of the four rules shown above. The �gures in the `random'

row show the performance obtained using a random move generator. The �gures in the `quickprop'

row show performance after training with the `quickprop' version [5] of the backpropagation algorithm

[3]; the �gures in the row labeled `c4' show the performance after training with the C4.5 version of ID3

[2]; the �gures in the row labeled `NN' show performance after training with the nearest-neighbours

algorithm [7]; �nally, the �gures in the row labeled CS show performance after training with the simple

classi�er system/genetic algorithm. All the �gures are averaged over 10 di�erent runs. The results

reported were gathered using training sets containing 80 training examples since trial and error showed

that this size of training set was su�cient to achieve negligably low error on the training examples from

all of the algorithms tested.

Error rate Meal freq. Nip freq.

hand-sim 0.864 0.090

random 0.014 0.043

quickprop 0.221 0.201 0.321

c4 0.233 0.479 0.371

NN 0.161 0.117 0.191

CS 0.344 0.251 0.275

Table 2:

The lowest error rate on the testing cases was 0.161 (16.1%) and this was produced by the nearest-

neighbours algorithm (NN). This �gure seems low but actually reveals relatively poor performance

(for reasons

2.6 Comparison with other behaviors (obstacle-avoidance and pursuit)

In view of the possibility that the poor performance obtained from the learning algorithms was due

to some aw in the overall methodology, we carried out some additional experiments. These aimed to

discover if we could use the same algorithms and the same methodology to learn more familiar animat

behaviors. In particular, we tested the learning algorithms on `obstacle-avoidance' and `pursuit'.

For these experiments we used the parameter settings for the learning algorithms described above except

in the case of network learning algorithms applied to the obstacle-avoidance task, where we used feed-

forward architectures containing just two hidden units with complete connectivity between layers. We

also used the same simulation setup but with a modi�ed animat in the case of the obstacle-avoidance

training. This animat had the usual two-wheel drive system but it used a simpli�ed sensory system

embodying just two proximity probes arranged in a 10 degree, front-facing arc (i.e., it had one probe ray

o�set �ve degrees on each side of the forwards direction). The environment for the obstacle-avoidance

training was also modi�ed so as to contain three, oval or rectangular objects. The environment was also

con�gured so that the boundaries of the space appeared opaque to the animat. Thus, the simulated

animat was able to `see' both the edges of the objects and the edges of the world.

The control procedure for the obstacle-avoidance simulations was as follows.

(1) Find the higher of the two proximity inputs.

(2) If this value exceeds 0.8 then swivel ten degrees to the right.

(3) Otherwise move forwards by an amount proportional to the length of the animat.

In Figure 4 we see a short trace of a simulated animat producing obstacle-avoidance behavior. The

animat's position in each simulation step is shown as a small, arrow-topped box as before. Thus the

sequence of boxes shows the animat's trajectory around the environment. Note how the trajectory

steers clear of all the obstacles and the boundaries of the space.

2.6.1 Pursuit

The second behavior examined was `pursuit'. For this behavior we used exactly the same experimental

setup as for conditional-approach; i.e., we used a simulated animat with seven probe rays arranged in

a 100-degree arc. The environment contained no objects and its boundaries were transparent.

Within the training simulation, the animat tracked a second simulated animat. The shape of this

second animat was rectangular and its size was arranged such that it would just intersect two of the

seven probe rays at 75% of the maximum animat-to-animat distance. The second animat (henceforth

the `leading animat') moved around the environment according to the following probabilistic regime.

In each cycle, there was a probability of 0.3 of the leading animat moving forwards, a probability of

0.35 of it making a forwards+left move and a probability of 0.35 of it making a forwards+right turn.

The step size for the leading animat (i.e., the total amount of drive that could be applied to the wheels)

was arranged to be 125% that of the pursuing animat. Thus the

3 Learning as the exploitation of justi�cation

The process of learning implemented by some arbitrary learner mechanism can be conceptualized as

the acquisition of a target input/output mapping.

2

To have any chance of success the learner requires

some source of feedback regarding the mapping to be acquired. In the much studied supervised learning

scenario, this feedback takes the form of a set of examples taken from the target mapping. The learner's

aim is to arrive at the point at which it is able to map any input taken from the

C P(C)

1

x2=2 0.5

x2=1 0.5

y1=1 0.5

y1=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

Table 4:

C P(C)

x2=2, y1=1 0.33

x2=1, y1=0 0.33

x1=3, x2=2 0.17

x1=2, x2=2 0.17

x1=3, y1=1 0.17

x1=3, x2=1 0.17

x1=1, x2=2 0.17

x1=2, y1=1 0.17

x1=2, x2=1 0.17

x2=1, y1=1 0.17

x1=1, y1=1 0.17

x1=1, x2=1 0.17

Table 5:

For example, we can observe the conditional probability of observing a particular instantiation of the

output variable for given �rst-order cases of the input variables. These probabilities are shown in Table

6. By the argument used previously, the second-order conditional probabilities here are degenerate

since there is necessarily exactly one occurrence of each second-order case of the constrained variables.

C P(C) P(y1=0|C) P(y1=1|C)

1 0.5 0.5

x2=2 0.5 0.33 0.67

x2=1 0.5 0.67 0.33

x1=3 0.33 0.5 0.5

x1=2 0.33 0.5 0.5

x1=1 0.33 0.5 0.5

Table 6:

Original pairs Derived pairs (x4 = |x1-x2|)

x1 x2 y1 x4 y1

1 2 --> 1 1 --> 1

2 2 --> 0 0 --> 0

3 2 --> 1 1 --> 1

4 Complexity implications for type-1 problems

As I noted above, the aim in supervised learning is to be able to identify target outputs with high

probability. We have now seen how the justi�cations for such assignments contained within the learner

feedback (i.e., training examples) are either directly or indirectly observed. Discovering direct forms

involves deriving probability statistics. Discovering indirect forms involves (1) deriving a recoding of

the training examples and (2) deriving probability statistics within the recoded data.

From this we can draw a preliminary conclusion regarding the generic complexity of learning problems.

Finding a solution to a particular learning problem necessarily entails discovering some combination

of two forms of justi�cation. The number of direct (henceforth `type-1') justi�cations is exponentially

related

in the most pronounced conditional probability e�ects with the output variable(s). ID3's initial aim,

therefore, is to identify the input variable which participates in the most informative set of �rst-order,

type-1 justi�cations. In cases where these justi�cations provide a satisfactory solution to the problem,

the algorithm is guaranteed to �nd the ideal type-1 solution.

If the type-1 solution involves higher-order probability e�ects then ID3 is not guaranteed to �nd the ideal

type-1 solution. But in many cases this does not diminish the algorithm's suitability as an approximate

type-1 discovery method. Supervised learning problems are typically prepared so as to ensure statistical

independence of input variables. If this property is obtained, then higher-order justi�cations will not

exist and any type-1 solution will necessarily be the �rst-order solution identi�ed by ID3.

Various other learning algorithms exist which provide e�ective methods for accessing type-1 justi�ca-

tions. Such methods are often biased towards �rst-order justi�cations (cf. the Least-Mean-Squares [11]

and Perceptron [12] methods) and are thus subject to the same reservations | and recommendations

| as the ID3 algorithm. Methods related to backpropagation [3], which do not have such an obvi-

ous �rst-order bias, can potentially be used to �nd higher-order type-1 solutions (se further discussion

below).

5

5 Complexity implications for type-2 problems

Type-2 justi�cations are probability e�ects which are only brought to light via a recoding of the original

training data. (Intuitively, they are e�ects which are discovered via an `analytic' process.) The fact

that there are typically in�nitely many possible recodings that might be applied to any given training

set means that measuring the di�culty of a type-2 problem (a problem whose solution is based purely

on type-2 e�ects) is impossible unless we set constraints on the nature of the recoding that can be

applied.

Before looking at what this means, I will make some preliminary observations about the nature of type-2

e�ects. Recall that a type-1 e�ect is an output probability which is either unconditional or conditional

on the absolute state of one or more input variables. A type-2 e�ect is an output probability which is

`associated' in some way with the states of input variables. But it cannot depend in any way on the

absolute states of input variables since this would make it a type-1 e�ect! Thus it must be associated

with the relative states of input variables. Putting it more simply, a type-2 e�ect must be based on a

relational property of the input variables.

6

This provides us with a rule-of-thumb for deciding whether a learning problem has a type-1 or a type-2

solution. If the problem is based on a relational input/output rule, then probability e�ects a�ecting

the output variable(s) cannot be based on absolute values of the input variables. Thus the solution can

be expected to be comprised of type-2 e�ects. If the problem is based on a non-relational input/output

rule, then the probability e�ects applying to the output variable must be based on absolute values of

the input variables. Thus the solution can be expected to be comprised of type-1 e�ects.

Of course, in reality, nothing is this simple. Learning problems which are based on relational in-

put/output rules typically have training sets which exhibit `spurious' type-1 e�ects. The training set

5

The Perceptron learning algorithm is, of course, a method which can only be successfully applied to linearly separable

problems, i.e., discrimination problems which can be solved by identifying a linear hyperplane separating the relevant

classes. Where the hyperplane is aligned with one of the axes of the input space, there will be marked correlations between

values of the corresponding input variable and the output variable, and thus pronounced type-1 e�ects. However, where

the hyperplane is unaligned such e�ects may disappear.

6

In fact this is not quite true. The argument stated allows it to be based on a non-relational property of a single input

variable provided that property e�ectively masks any type-1 e�ect.

15

[3] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations by back-propagating

errors. Nature, 323 (pp. 533-6).

[4] Becker, S. and Cun, Y. (1988). Improving the convergence of back-propagation learning with

second-order methods. CRG-TR-88-5, University of Toronto Connectionist Research Group.

[5] Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Architecture. CMU-CS-90-

100, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

[6] Goldberg, D. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley.

[7] Duda, R. and Hart, P. (1973). Pattern Classi�cation and Scene Analysis. New York: Wiley.

[8] Nehmzow, U., Smithers, T. and Hallam, J. (1989). Really useful robots. In T. Kanade, F. Green

and L. Hertzberger (Eds.), Proceedings of IAS2, Intelligent Autonomous Systems (pp. 284-292).

Amsterdam.

[9] Cli�, D., Husbands, P. and Harvey, I. (1993). Evolving visually guided robots. In J. Meyer, H.

Roitblat and S. Wilson (Eds.), From Animals to Animats: Proceedings of the Second International

Conference on Simulation of Adaptive Behaviour (SAB92). MIT/Bradford Books.

[10] Millan, J. (forthcoming). On autonomous mobile robots and reinforcement connectionist learning.

Neural Networks and a New AI. Chapman and Hall.

[11] Hinton, G. (1989). Connectionist learning procedures. Arti�cial Intelligence, 40 (pp. 185-234).

[12] Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Computational Geometry

(expanded edn). Cambridge, Mass.: MIT Press.

17

