
Learning Where To Go without Knowing Where That Is:

The Acquisition of a Non-reactive Mobot Behaviour by

Explicitation

Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

Email: Chris.Thornton@cogs.susx.ac.uk

Tel: (44)273 678856

December 14, 1994

Abstract

In the path-imitation task, one agent traces out a path through a second agent's sensory �eld.

The second agent then has to reproduce that path exactly, i.e. move through the sequence of

locations visited by the �rst agent. This is a non-trivial behaviour whose acquisition might be

expected to involve special-purpose (i.e., strongly biased) learning machinery. However, the present

paper shows this is not the case. The behaviour can be acquired using a fairly primitive learning

regime provided that the agent's environment can be made to pass through a speci�c sequence of

dynamic states.

Introduction

In reactive mobot behaviours such as wall-followingand pursuit, speci�c stimuli evoke speci�c responses.

As a result, the input/output pro�le for the behaviour shows marked correlations. The existence of

these means that the behaviour can be straightforwardly acquired using any one of the wide range

of reinforcement, neural-network and evolutionary methods | in fact anything capable of exploiting

statistical e�ects. In non-reactive behaviours, responses are reactions to hidden states, i.e., states

which are temporally, physically or logically inaccessible to the agents sensors. Such a behaviour's

input/output pro�le does not show marked correlations and thus cannot be straightforwardly acquired

using conventional techniques.

Path-imitation is a case in point. In the path-imitation task, one agent traces out a path through a

second agent's sensory �eld. The second agent then has to reproduce that path exactly, i.e. move

through the sequence of locations visited by the �rst agent. This is a non-trivial and clearly non-

reactive task since the behaving agent's moves are `reactions' to temporally remote (i.e., in-the-past)

states of the environment. The acquisition of path-imitation behaviour might be expected to involve

special-purpose (i.e., strongly biased) learning machinery. However, this turns out not to be the case.

1



The behaviour can be acquired using a fairly primitive learning regime provided that the behavioural

environment can be made to pass through a speci�c sequence of dynamic states.

The paper breaks down into four main sections. First, I describe the acquisition experiment performed.

Second, I analyze the resulting architecture of the acquisition agent. Third, I review the theoretical

background and motivation for the work. (Theoretically oriented readers may prefer to read the third

section �rst.) The fourth and �nal section is a discussion.

1 The acquisition experiment

The acquisition experiment involved subjecting a simulated mobot (mobile robot) to a sequence of envi-

ronmental scenarios. Learning accomplished by the mobot in the earlier scenarios had an impact on the

character of later scenarios. Thus, the developmental process involved an ongoing interaction between

learner and environment. The ultimate success of the process relied on there being a tight-coupling

between the `developmental trajectory' (changes in the learner) and the `environmental trajectory'

(changes in the environment). The learner mobot was equipped with two proximity sensors (shown as

dashed-lines in Figure 1). Each one of these sensed the proximity of the nearest obstructing surface

along a particular ray. Proximity values were normalized in the range 0..1, with lower values indicating

lower sensed proximities. All sensor inputs were noisy with noise increasing linearly with measured

range. The boundary of the space, shown here as a solid line, was not sensed by the mobot.

Figure 1: The learner mobot.

2 The acquisition method

For reasons that will become clear, I call the acquisition process used in this experiment `explicitation'.

It is essentially the competitive learning regime of Rumelhart and Zipser (1) with three modi�cations.

The �rst modi�cation enables the regime to operate incrementally. With this modi�cation, competitive

learning adds nodes to the network as and when they are needed. The process comes to an end when

2



each node is fully tuned to the inputs that it has captured.

1

The second modi�cation associates a signi�cance value with each weight in the network. In standard

competitive learning, each weight is equally signi�cant in the computation of node response and nodes

thus have no way to discount particular inputs. As a result there is no straightforward way for them

to capture a statistical e�ect which does not involve all the inputs (2). In the explicitation regime, all

weights for all competitive units have an associated signi�cance value whose value reects the accuracy

of the weight as an input-value predictor. Node response is computed taking the signi�cance values

into account, and thus weights with low accuracies (signi�cance values) are e�ectively discounted where

appropriate.

The third modi�cation enables the regime to operate recursively. The capture of some e�ects by a

set of competitive nodes triggers a further round of competitive learning in which the input data are

descriptions of the nodes themselves. For each grouping identi�ed by this process, an internal variable is

created and a link made so that the variable's value shows which of the nodes in its group is most active.

New data are then derived by presenting the original data and reading o� the values of the internal

variables. These





Figure 4: The structure of subnet-1.

Figure 5: Competitive nodes in subnet-2.

The �rst node, for example, detects the situation in which the facilitator mobot is moving away from

the learner on the left hand side.

When competitive learning is applied to the descriptions of the competitive nodes in subnet-2, two

main groupings are recovered. In one group we have the two nodes which detect facilitator motion

away (on left and right). In the other group we have the two nodes which detect facilitator motion

towards. The two internal variables generated thus form bilateral approach and retreat detectors. Each

one measures the degree to which the facilitator is moving towards, or away from the learner on either

side. This subnet appears in the bottom, right corner of Figure 6, which shows the sequence of subnets

produced up to this point.

As we will see, these subnet-2 output variables will turn out to play a crucial role in the production of

path-imitation behaviour. Their values encode the relative motion of the facilitator and can thus be

straightforwardly used to drive the motors of the learner during path replication.

5



(3)

(1)

(4)



333333333

33 3 3 3 33 3 33 33 3 3

33333333

Figure 7: Environment-2.

path, the learner responds by tracking the facilitator across the space, see the upper-left box in Figure

8. As the learner tracks the facilitator across the space, the output variables in subnet-2 are instan-

tiated with values which reect the relative motion of the facilitator. The bilateral approach/retreat

detectors encode the left/right motion of the facilitator. The raised motor variables encode the for-

wards/backwards motion.

By storing the sequence of instantiations produced in subnet-2's output variables, we thus acquire a

sequence of relative-motion descriptions which can be used to regenerate the path executed by the

facilitator. Feeding this program (after suitable post-processing) into the learner's motor system, we

e�ectively obtain the desired path-imitation, see the lower two boxes in Figure 8 . In the lower-right

box, the facilitator's path is shown using a light dashed line. The learner's imitation of it is shown

using a heavier, dashed line.

3 The architecture: a guided tour

In Figure 9 we see the �nal network architecture produced by the learning process. The various

shaded areas correspond to functional components. In the lower, left part of the architecture we have

the `Prototypical proximities detection subsystem'. Recall that this essentially serves to clean-up the

relatively noisy proximity inputs. This cleaning-up process is actually an essential part of the overall

acquisition process since it paves the way for the development of the unilateral motion detectors which

emerge in subnet-2. It is only thanks to the lack of noise in the proximity measures (produced in

subnet-1's output variables) that subnet-2's node are able to capture the relevant approach/retreat

patterns. In the right-hand part of subnet-1 we have the motor-control subsystem. This is perhaps

the simplest component in the entire architecture. The nodes have captured the two main reexescaptureofnoisemain reexescaptureofnoisemain reexes







(2) P (yjx

0

) = 1, where x

0

is either the current input or some part of it, or if

(3) P (yjg(x)) = 1, where g is some arbitrary function and x is the current input.

This taxonomy is derived simply by enumerating the possible syntactic forms for the justi�cation.

It is invariant with respect to the probability value selected (we do not have to use p = 1). It is

also exhaustive since there is no alternative way of characterizing the conditional or unconditional

probability of y being the right output for input x. The interesting consequence of this is that any

learning method which produces justi�ed output guesses, must exploit (i.e., use in the generation of

guesses) some combination of these three forms of justi�cation.

The cash value of this becomes clear when we consider the ways in which each of the three forms

can be exploited. Exploiting a justi�cation in this context means `�nding' the probability in a given

distribution. Thus the complexity of exploiting a particular justi�cation is related to the size of the

relevant distribution. This prompts us to split the justi�cation forms up according to whether the

relevant distribution is �nite. In particular, we must distinguish between what I call the direct forms

P (y) and P (yjx) which are associated with �nite probability distributions, and the indirect form

P (yjg(x)) which is associated with an in�nite one. The distribution P (yjg(x)) is in�nite due to the

in�nite number of choices to be made regarding g, which is de�ned as any computable function.

This analysis of justi�cation sources leads directly to a fundamental insight concerning the complexity

of learning problems. Problems which involve exploiting either of the two direct forms involve the

equivalent of sampling a �nite distribution while problems which involve exploiting the indirect form

involve the equivalent of sampling an in�nite distribution. Other things being equal, the task of

exploiting direct forms thus has a lower theoretical complexity than the task of exploiting the indirect

form. Note that this is a qualitative distinction similar to the one between polynomial and exponential

time complexity. However, it has a �rm, mathematical basis in the enumeration of syntactic forms for

probability values.

4.1 Statistical v. relational problems

It is important to note that values of the function g (which I call the recoding function below) must

depend on relative argument values. In other words, the function must compute or evaluate a relational

property of its arguments. Were we to have an indirect justi�cation in which values of the recoding

function depended on the absolute values of its arguments, then we could specify the same justi�cation

purely in terms of those absolute values, i.e., by deleting the g and associated parentheses. Thus, all

indirect-form justi�cations necessarily involve functions which e�ectively compute relationships of their

arguments.

In recognition of this, I call the class of higher-complexity problems which involve exploiting indirect

justi�cations relational and the class of lower-complexity, direct-justi�cation problems statistical

(since exploiting a direct-form justi�cation involves sampling for a statistical e�ect in the form of an

observed probability). If it was not obvious before, the introduction of this new terminology should

drive home the point that this analysis gives a foundation to the well-known Machine Learning heuristic

which states that `learning relationships is hard' [4].

10



5 Example

To illustrate this notion of indirect justi�cation, consider the following training set. This is based on

two input variables (x1 and x2) and one output variable (y1). There are six training examples in all.

An arrow separates the input part of the example from the output part.

x1








