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Abstract

The paper looks at how the hidden-vector cluster analyses associated with Elman and others

seemed to provide a potentially important link between the symbolically-oriented level of analysis

and the connectionist level of analysis | a link that might one day help to explain how higher

mental processes are grounded in neural architectures. The paper goes on to reconsider the im-

plications of these analyses in light of some recent work by Finch and Chater which shows that

linguistically meaningful categories (of the type derived from hidden-vector analyses) are directly

evidenced in the N-gram statistics of natural language. The implication of this work seems to be

that hidden-vector analyses do not primarily address the link between the symbolic and connection-

ist levels of explanation but rather tell us something about the statistical properties of the training

environments used. The consequences of this result for cognitive science are lightly sketched in.

1 Introduction

There has always been the hope that work in Arti�cial Intelligence (AI) would help to elucidate and

extend the philosophical study of the mind. But, paradoxically, the interface between AI and philosophy

appears to have become harder to negotiate as the years have gone by. In the early days links between

AI and philosophical studies were readily apparent. AI researchers tended to construct programs that

re
ected their introspections about mental processes or, in some cases, verbal protocols given by human

problem solvers [cf. 1]. This quite naturally produced systems populated with familiar landmarks.

But if the early research was relatively accessible to philosophical minds, developments in the �eld

soon seemed to be carrying AI o� into an `outer space' remote from both introspective experience and

philosophical conceptualisation. The e�ect was, perhaps, particularly noticeable in the area of vision

research. Vision researchers of the 1960s, e.g., Roberts [2], were largely concerned with systems which

sorted out neat, perspective drawings using rules whose good sense could easily be comprehended. cf.

Waltz �ltering [3]. But by the late 1970s researchers had begun to work with systems which dealt



It was perhaps inevitable that there would be some kind of reaction to AI's gradual descent into high

technology.Andwhenitcame,itcameinarushwiththemostobviousmanifestation beingJohn

Searle's vigorous attack on `strong AI'. Searle's aim was to demonstrate that AI-like systems could not

possibly have intentional states (such as understanding) regardless of their level of performance.

Of course, the status of the argument was and is the subject of debate.But in attempting to demonstratelogical 
aws in Searle's argument [cf.5], AI researcherswere,perhaps,missing thepoint.WhateverSearledemonstratedabouttheintentionalpropertiesofAIsystemshedidstimulateamuchmore

thoroughscrutinyofthefunctionalistassumptionsunderlyingstrong(andnotsostrong)AI.Thisscrutiny was, as Sloman pointed out at the time [6], urgently needed.

Functionalismisessentiallytheideathatintentionalstateshavenothingtodowitharchitectural

substrates.Beingafunctionalistimpliesbelievingthatallthatisrequiredforintentionalstatesisthe rightprogram.The question of what machine (architectural substrate) the program is running on

is assumed to be irrelevant.Functionalism legitimizes the sort of AI research which attempts to model

mental processeson computers which donot evenremotely resemble thebrain.Itsuggeststhatthe

important thing is to capturethephenomenon at a computational level of description.Lateron the

algorithmic and implementation details can be worked out.Functionalism e�ectively urges a top-down

program of research.The image is that of a `triumphant cascade through Marr's threelevels.'[7, p.

227]

But the validity of the functionalist stance is open to question.And, of course, it is not just a questionof computer simulations of mental processes:theissue is much more general than that.It has to do

withthevalidity ofsimulations ingeneral.Ithastodowithabstractionsandinparticular,whathappens (ie.how propertiesare a�ected)when one moves from a real phenomenon to an abstractionof it (i.e., a simulation, model or theory).

When we substitute some phenomenon X with a model of X, certain properties of X are carried over to

the model and some are inevitably lost.Otherwise, what sort of `abstraction' would it be?The model

| if it is genuinely a model rather than a duplication | will abstract away certain characteristicsofthe original. If it is agoodmodel it will abstract away the `less signi�cant' characteristics of X and leave

behindthe`essentialdetails'.Butthepointis,anypropertiesassociatedwith characteristicswhichare



to the case where we attempt to build computer simulations of mental processes. In simulating mental

processes we are simply trying to construct abstractions of the original phenomenon.

2

No matter how

accurate our abstraction, some properties of the original phenomenon will necessarily be lost. This is,

after all, the essence of abstraction.

Since a computer simulation is just another form of abstraction, and since abstraction necessarily

wastes properties, computer simulations of mental processes potentially lose some of the properties of

real mental processes. The implication is that Searle was essentially correct: architecture may not be

irrelevant. The properties we are actually interested in (understanding, belief etc.) may be to do with

characteristics of the substrate.

2 Connectionism and the need for good grounding

Searle's attack on strong AI seems to have re
ected



showed how the network had constructed an internal hierarchy which 
agged linguistically important

distinctions (e.g., consonant versus vowel.) The newsworthiness of this work was founded on the fact

that these distinctions were not given to the network a priori. Rather they were learned directly from

the data.

Sejnowski and Rosenberg's hidden-vector analysis method soon became part of the standard toolkit

of the connectionist researcher. Recently, it has been used to particularly good e�ect by Elman who

showed how a copy-back network trained to do word-prediction (given only a diet of raw English

sentences), formed an internal hierarchy that captured lexical and semantic categories [12].

For anyone dreaming wistfully of a bottom-up, `reverse-cascade', this new work by Elman and others

looked very promising. The notion that the behaviours of connectionist systems embodied tacit rules

was fairly well accepted especially in light of Rumelhart and McClelland's work on the learning of past

tenses [13]. But with the new hidden-vector analyses one could now say much more precisely what form

the terms of these rules might take. In e�ect, the hidden-vector analyses provided an initial step-up

on the reverse cascade. It built a small bridgehead that connected the mushy and remote world of

low-level connectionism (a world of `weights', `activation values', `links', `units', `energy levels' etc.)

with the rather more tractable world of symbols and class de�nitions.

Andy Clark was quick to see the potential of this new method. In discussing



4.1 A type-1 theory for copy-back networks?

What should we make of this work? Finch and Chater's own view is that statistical analysis provides us

with a better understanding of the performance and behaviour of certain sorts of networks (e.g., Elman,

copy-back networks). They conclude that their statistical work shows that the `copy-back scheme is

sampling these [N-gram] statistics successfully.' The go on to say that `these results suggest that the

hidden unit patterns that recurrent neural networks develop can be viewed as re
ecting quite directly

the statistical structure of the sequences learnt.' [17]

By showing that the internal structures formed by copy-back word-prediction networks closely resem-

ble the structures derived from a particular statistical analysis, they have e�ectively shown that the

networks are sampling the relevant statistic. In a sense, they have provided a type-1 theory [18] for the

behaviour of these networks. The theory says that the network is performing a particular computation

and it characterizes this computation without making any reference to implementation issues.

For those who want to believe that architecture and grounding are important, this is clearly a worrying

demonstration since it seems to eliminate the `ground' altogether. Surely, if all an Elman network is

doing is sampling a certain statistic then its `networkness' cannot be the origin of signi�cant properties.

A functionalist stance towards such networks, then, would seem to be perfectly appropriate. On the

other hand it might be argued that any retreat into functionalism must be premature. The statistical

work in question has only looked at one particular domain (natural language) and has produced results

which seem to bear directly on only one type of network (the Elman copy-back net). Our assumptions

about the importance of grounding and our hopes for the reverse cascade may then turn out | when

other systems are analysed more carefully | to be be fully justi�ed.

5 Is it statistics all the way up?

However things go for the `grounding' issue, one thing is clear: Finch and Chater's work suggests that

we should review our attitude to the value of statistical analysis. Classical AI made practically no use

whatsoever of it. New approaches such as reactivism and alife-ism have also tended to largely ignore its

potential. Connectionism has used it to a certain degree but typically only for the purposes of analysing

the behaviour of models. Finch and Chater's work suggests that it can play a much more direct role

in our attempt to understand the nature of concepts and classes. Of course, all that has been shown



they concentrated on analysing 5-gram statistics of text. As they note, `an N-gram is an ordered

sequence of N symbols. The frequencies of occurrence of each N-gram in a continuous stream of data

constitutes the N-gram statistics of the data set.' [15]. Their aim was to look at the number of times
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