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Abstract

This paper is concerned with the types of invariance exhibited by Ra-

dial Basis Function (RBF) neural networks when used for human face

classi�cation, and the generalisation abilities arising from this behaviour.

Experiments using face images in ranges from face-on to pro�le are pre-

sented to show the RBF network's invariance to 2-D shift, scale and y-axis

rotation. Finally, the suitability of RBF techniques for future, more au-

tomated face classi�cation purposes is discussed.

1 Introduction

The work reported here is based on a masters degree project and dissertation

(Howell 1993) completed at the University of Sussex, and is primarily concerned

with the generalisation capabilities exhibited by RBF neural networks in a static

face recognition task. This work is being extended to a more fully `environmen-

tal' process which is able to identify individuals in video sequences and interpret

their gestures. The human face poses several severe tests for any visual system:

the high degree of similarity between di�erent faces, the extent to which expres-

sions and hair can alter the face, and the large number of angles from which

a face can be viewed in common situations. A face recognition system must

be robust with respect to this variability and generalise over a wide range of

conditions to capture the essential similarities for a given human face.

The RBF network has been identi�ed as valuable model by a wide range of

researchers (Moody & Darken 1988, Moody & Darken 1989, Poggio & Girosi

1990, Girosi 1992, Musavi et al. 1992, Ahmad & Tresp 1993). Its main char-



by a well-developed mathematical theory (resulting in statistical robustness).

RBFs are seen as ideal for practical vision applications by Girosi (1992) as they

are good at handling sparse, high-dimensional data (common in images), and

because they use approximation which is better than interpolation for handling

noisy, real-life data. RBF networks are claimed to be more accurate than those

based on Back-Propagation (BP), and they provide a guaranteed, globally op-

timal solution via simple, linear optimisation. RBF techniques should be well

suited to the face recognition task and may �nd second-order (relative distance)

di�erences that can generalise well rather than �rst-order (absolute distance)

information.

Many cognitive studies of the way human faces are perceived (Bruce & Young

1986, Bruce 1988, Ellis & Young 1989, Hay & Young 1982, Hay et al. 1991) have

contributed to our understanding of the problems for automating this kind of

visual processing. For example, the disproportionate e�ect on face recognition

of inversion has been taken as support for special mechanisms in face processing

(see (Hay & Young 1982) for a critical review). At a general level, there is also

support for treating face classi�cation as a task separate from, say, expression

interpretation (Ellis & Young 1989). This study describes evidence for sepa-

rate mechanisms being present in human vision for facial recognition and facial

expression recognition. This is shown most clearly in prosopagnostic people,

who cannot distinguish individual faces, but can usually still `read' emotional

states from expressions. At a more detailed level, there is support for having

face `units' for recognising familiar faces (Bruce & Young 1986, Bruce 1988).

This idea is partly captured by the RBF techniques described next where the

�rst layer of the network maps the inputs with a hidden unit devoted to each

view of the face to be classi�ed. The second layer is then trained to combine

the views so that a single output unit corresponds to the individual person.

2 The RBF Network Model

The RBF network is a two-layer, hybrid learning network (Moody & Darken

1988), similar to the BP model in terms of structure, activation and gradient

descent methods in its supervised layer from the hidden to the output nodes.

However, the unsupervised layer, from the input to the hidden, di�ers in that

individual radial Gaussian functions for each hidden unit



Each hidden unit has an associated � (sigma) `width' value which de�nes

the nature and scope of the unit's receptive �eld response
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. This means that,

unlike the BP network, the RBF has an activation that is related to the relative

proximity of the test data to the training data. This allows a direct measure of

con�dence in the output of the network for a particular pattern. If a pattern is

extremely di�erent to those trained, very low (or no) output will occur.

The output o for hidden unit h (for a pattern l) can be expressed as:
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The hidden layer output is also unit-normalised as suggested by (Hertz et

al. 1991).

For output unit i, the output is:
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Weight adjustment is made with the Widrow-Ho� delta learning rule
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to

minimize the error measure (cost function) E of the network:
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where t

i

(l) is the target output for unit i with pattern l.

Convergence of the network whilst training is de�ned as the point when the

error measure for the network goes below a pre-determined `error limit' value.

The error � for output unit i is:
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This is combined with two �xed parameters which control the speed of change,

�, the learning rate, and �, a momentum term, to give the change in value for

weight w

ih

between the output and hidden layers:
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The RBF network's success in approximating non-linear multidimensional

functions is dependent on su�cient hidden units being used and the suitability

of the centres' distribution over the input vector space (Chen et al. 1991). In

this implementation, each hidden unit centre has been set to one of the training

patterns, and the weights w

ih

are initialised to the target output values, ie

w

ih

= t

i

(l), as recommended in Hertz et al. (1991).

1

it is equivalent to the standard deviation of the width of the Gaussian response, so larger

values allow more points to be included

2

also known as LMS (least mean square) rule
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Figure 1: Entire 10-image range for one person as produced by frame grabber

3 Method

To simplify the problem, lighting and location for the training and test face im-

ages in these initial studies was kept as constant as possible. For each individual

to be classi�ed, ten images of the head and shoulders in ten di�erent positions

in 10

�

steps from face-on to pro�le of the left side (see Fig. 1), 90

�

in all, were

used.

Two data sets were used: Type I with two faces, ie 20 images, for quick

processing to give a general view of the networks' properties, and Type II with

ten faces to give a more realistic test of the network. The resolution of the

images used in the testing is represented as `n�n', ie `10�10' for 10 by 10 pixel

data. The ratio of training and test images used from the data set is represented

as `train/test', for instance, `2/18', where 20 images were in the data set and 2

were used for training and 18 for test.

3.1 Pre-processing of the Test Data

The images were gathered using a video camera and frame grabber, giving 8-

bit grey-scale 384�287 images. To produce data suitable for the network, a

100�



Figure 2: Example 25�25 subsampled

face data



3.2 Image Resolution Data Sets

A range of resolutions were used for testing (the �gures in brackets indicate the

resolution before convolution): 10�10 (12�12), 21�21 (25�25), 44�44 (50�50),

and 90�90 (100�100). If the 10�10 could give as accurate results as the 90�90,

one could take advantage of a considerable reduction in the amount of data to

be processed: from 8100 elements per image for 90�90 to 100 elements for the

10�10. This would be especially useful in the training stage, as the number

of input units will be directly related to the computational work done, from a

fraction of a second for 10�
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Figure 4: Comparison of generalisation to � with 90�90 face samples
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4.2 Type I Data with Varying Error Limit

The next experiment was to test the network's performance after each training

epoch to show how e�ective a criterion the error limit was. The error limit, ie

how well it could classify the training patterns, was compared with its success

at classifying the test patterns.

Fig. 5, showing the 10/10 training, should be read from right to left. The

network was tested to compare its success rate of classi�cation against its current

error measure value. There is a clear correspondence between recall (for the

training images) and generalisation (for the test images).

2/18 training was also tested, but was much more erratic. The best per-

formance in generalisation (88%) was early on in training at a relatively high







Test 6: 21�21 face samples, size variance

Training/Test Patterns Min/Max Epochs Min/Max % Correct





seen as a smoothing factor on the energy landscape, as constructed from the

energy function in Eq. 4, which helps speed the BP network gradient descent

to a suitable global minimum. It is signi�cant that the RBF network did not

require this smoothing, indicating a more robust model.

The BP network with 21�21 data was capable of 100% success rates even with

2/18 training, although this dropped to 78% without added noise.

For the Type II (10 person) data, training tests with 21�21 images were at-

tempted with the BP network using a wide range of values for the variable

parameters, such as learning rate, noise level and number of hidden units, but

a combination which allowed the network to converge was not found.

6 Conclusion/Future Work

In summary, the locally-tuned linear Radial Basis Function (RBF) networks

showed themselves to be superior for the face recognition task when compared

to the more complex, non-linear Back-Propagation (BP) based networks and

tested on the larger 10-person data set. The RBF nets continued to show a fair

level of discrimination between the di�erent people's faces whereas the BP nets

were unable to classify them at all with this data set despite producing good

performance on the 2-person data set. This is a promising result for the RBF

techniques considering the high degree of variability introduced by the varying

views of a person's face in these data sets. The result is also backed up by

the high level of performance of the RBF nets which held up with increased

size and o�set variance on the 2-person data set. The rather lower level of

performance of the RBF nets on the 10-person data set was also little a�ected

by the increased size and o�set variance introduced in more challenging tests of

their discrimination ability.

The idea of centering the nose of the pro�le views seems to have worked well

in this study and coped with missing features from the other side of the face.

This is in good accord with known results from Ahmad & Tresp (1993) who

trained a variety of nets to recognise stationary hand gestures from computer-

generated 2-D views (polar coordinates) of �ngertips. They obtained good gen-

eralisation for 3-D orientation and showed that RBF nets were able to cope well

even when much of the data was missing. Although their standard test data

was handled well by a BP net, it performed badly with missing features and

su�ered a serious falling o� in performance as more elements were lost. They

showed, however, that a Gaussian RBF net (of the kind we used in our studies)

could cope well, having a success rate of over 90% even with 50% of the fea-

tures missing. This behaviour is very useful for coping with occlusion and other

factors which lead to incomplete visual data.

The invariance observed for the RBF nets would certainly be adequate for

coping with data isolated by an automated `face-�nder' routine. This is neces-
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sary for the next stage of development in which faces must be found in image

sequences using a combination of a wide-angle camera and separate `retinal'

camera to capture close-up views of a person's face on demand. The statistical

nature of the information successfully captured by RBF nets to do the discrim-

ination task may well also be e�ective for the face localisation task. It is clear

from the work of Turk & Pentland (1991) and others using statistically based

techniques that this is the key to good performance and the RBF techniques

have the added advantage of being mathematically well-founded.

In future experiments, the performance could be improved by taking a more

sophisticated measure of con�dence from the output nodes in the RBF nets. For

example, the simple `winner takes all' strategy used here gave a conventional
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