




of the ideas put forward, by means of a simulation study using a highly abstract model of an FPGA.

Finally, Section 4 describes a new evolvable hardware architecture, which is easy to build, but yet

takes many of the important ideas on-board. The bene�ts of this architecture, and the underlying

approach, are demonstrated by the real-world performance of this machine in controlling a robot.

2 Why Evolve in Hardware?

Under what conditions is the use of evolvable hardware bene�cial, when compared with systems





behaviour: the clock is used so that the components are given time to reach a steady state be-

fore their condition is allowed to inuence the rest of the system. I suggest (with the aid of the

empirical evidence presented in the following sections) that such constraints should be abolished

whenever they are a limitation on the potentially useful behaviour of an evolving hardware system.

A designer carefully avoids \glitches," \cross-talk," \transients" and \meta-stability," but all of

these things could be put to use by arti�cial evolution.

Evolution could also put to use properties of the hardware that the designer could never know

about. For instance, a circuit may evolve to rely on some internal time-delays of an integrated circuit

that are not externally observable. Even if there is a silicon defect, the system could evolve to use

whatever function the \faulty" part happened to perform. This raises a fundamental problem:

a circuit that is evolved for a particular evolvable hardware system (a certain FPGA chip, for

example) may not work on a di�erent system that is nominally identical | no two silicon chips

are the same. There are several ways in which this could be avoided. The circuits could be evolved

to be robust to perturbations in some properties that vary from chip to chip (by altering the

chip's temperature or power supply during evolution, for example). Evolution could be forced to

produce building blocks that are repeatedly used in the circuit, and would therefore be insensitive

to characteristics that varied across one chip. Evolution could evaluate a con�guration on more

than one piece of recon�gurable hardware when judging its quality (this can also be done using

a single recon�gurable chip that can instantiate the same circuit in several di�erent ways, e.g.

by using an FPGA's rotational symmetry). Finally, it could be accepted that further adaptation

will have to take place each time a con�guration is transferred from one recon�gurable device to

another [14, 15, 16, 17].

The next two sections of this paper will provide experimental evidence for the ideas I have

put forward here. Firstly, I present a simulation of the evolution of an FPGA con�guration, which

demonstrates that evolution can produce circuits optimised for a particular implementation, and

in the absence of modularisation and clocking constraints. Then I describe a real evolved hardware

control system that controls a real robot, and was produced according to the above rationale,

demonstrating its bene�ts.

3 A Millisecond Oscillator from Nanosecond Logic Gates

Abandoning the external clock can reap even more rewards than were mentioned above. A clocked

digital system is a �nite-state machine, whereas an unclocked (asynchronous) digital system is not.

To describe the state of an unclocked circuit, the temporal relationships between its parts must be

included. These are continuously variable analogue quantities, so the machine is not �nite-state.

This theoretical point gives a clue to a practical advantage: in an unclocked digital system, it

is possible to perform analogue operations using the time dimension, even when the logic gates

assume only binary values (see for example, the pulse stream technique [21, 22]).

In the previous section, I argued that when producing circuits by evolution rather than design,

the use of a clock is often an unnecessary limitation on the way in which the natural dynamics of

the components can be used to mediate robot behaviour. This is not always the case | electronic

components usually operate on time-scales much smaller than would be useful to a robot; unless

the system can evolve such that the overall behaviour of the components (when integrated into

the sensorimotor feedback loop of the robot) is much slower than the behaviour of individual

components, then a clock (perhapsodar



(Node 0 was a special \ground" node, the output of which was always clamped at logic zero.)

This encoding is based on that used in [2]. The source of each input was speci�ed by counting

forwards/backwards along the genotype (according to the `Direction' bit) a certain number of

segments (given by the `Length' �eld), either starting from one end of the string, or starting from

the current segment (dictated by the `Addressing Mode' bit). When counting along the genotype,

if one end was reached, then counting continued from the other.

BUFFER

NOT

NOR

OR

AND

SymbolName

NAND

NOT-XOR

XOR

(a)

Bits Meaning

0-4 Junk

5-7 Node Function

Pointer to First Input

8 Direction

9 Addressing Mode

10-15 Length

Pointer to Second Input

16 Direction

17 Addressing Mode

18-23 Length

(b)

Table 1. (a) Node functions, (b) Genotype segment for one node.

At the start of the experiment, each node was assigned a real-valued propagation delay, selected

uniformly randomly from the range 1.0 to 5.0 nanoseconds, and held to double precision accuracy.

These delays were to be the input-output delays of the nodes during the entire experiment, no

matter which functions the nodes performed. There were no delays on the interconnections. To

commence a simulation of a network's behaviour, all of the outputs were set to logic zero. From that

moment onwards, a standard asynchronous event-based logic simulation was performed [19], with

real-valued time being held to double precision accuracy. An equivalent time-slicing simulation

would have had a time-slice of 10

�24

seconds, so the underlying synchrony of the simulating

computer was only manifest at a time-scale 15 orders of magnitude smaller than the node delays,

allowing the asynchronous dynamics of the network to be seen in the simulation. A low-pass �lter

mechanism meant that pulses shorter than 0.5ns never happened anywhere in the network.

The objective



The experiment succeeded. Figure 2 shows that the output after 40 generations was approx-

imately 4

1

2

thousand times slower than the best of the random initial population, and was six



This simulation, although quite an unrealistic model of the evolution of a real FPGA con�gu-

ration, has shown how evolution can assemble high speed components to produce behaviour on a

time-scale that approaches that useful to a robot. It exploits the characteristics of the implementa-

tion, and does not require the imposition of spatial or temporal constraints such as modularisation

or clocking. The style of solution adopted (the beating of spike trains) is an analogue operation

over the time axis, and would have been more di�cult in a discrete time system.

4 A Real Evolved Hardware Robot Controller

In this experiment, a real hardware robot control system was evolved for wall-avoidance behaviour

in an empty 2.9m�4.2m rectangular arena, using sonar time-of-ight sensing. The two-wheeled

robot (\Mr Chips," Figure 4(a)) has a diameter of 46cm, and a height of 63cm. For this scenario,

its only sensors were a pair of �xed sonar heads pointing left and right.

(a)

1 1 16101

Sonar

Motors

MM
Clock

Evolved







When it is remembered that the DSM receives the raw echo signals from the sonars and directly

drives the motors (one of which happens to be more powerful than the other), with only two internal




