
Evolution of Learning Rules for Supervised Tasks

I: Simple Learning Problems

Ibrahim KUSCU

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

Email: ibrahim@cogs.susx.ac.uk

November 10, 1995

Abstract

Initial experiments with a genetic based encoding schema are presented

as a potentially powerful tool to discover learning rules by means of evo-

lution. Several simple supervised learning tasks are tested. The results

indicate the potential of the encoding schema to discover learning rules

for more complex and larger learning problems.

Keywords:Evolution, Genetic Algorithms, Supervised Learning

1 Introduction

Evolution and learning address two di�erent levels of adaptation processes: one

taking place during the life time of an organism and the other taking place

during the evolutionary history of population of organisms [3] [18].

There are quite a number of research concentrating on the relationship be-

tween evolution and learning [2] [16] [11] [19] [1] [17]. The nature of interaction

between the two has been shown to be complementary : the presence of learning

can facilitate the process of evolution and evolutionary methods can signi�cantly

speed up the learning process.

However, in these studies, the methods of learning have been chosen before-

hand and frequently back-propagation algorithm is used. Evolution is used as

a mean of creating an initial state upon which learning process is applied for

increased performance. However, the nature of learning during an evolutionary

process has not been investigated.

1



An interesting experiment was carried out by Chalmers [3]. His primary

aim was to observe how learning might evolve during the process of evolution.

Rather than looking at the interaction between evolution and learning, the ma-

jor focus of his study was evolution of learning mechanisms themselves. Starting

from a random population of genome coding for the weight-space dynamics of

arti�cial neural networks, he found out that a learning rule which is very close

to the delta rule has evolved successfully in learning eight linearly separable

tasks of supervised learning. A similar experiment is applied in the area of

unsupervised learning to �nd rules for the Self-Organising Map [4]. They have

supported the idea that genetic algorithms can be used to search for optimal

learning algorithms by providing evidence for the existence of several learning

algorithms that produced an organisation similar to that of Kohonen Algorithm.

These experiments encouraged the hope that it is not impossible for such ge-

netic based systems to discover new learning algorithms. However, realising

this hope is not easy. For example, trying di�erent supervised learning prob-

lems at a larger scale or trying another class of learning such as reinforcement

learning would extensively increase the complexity of the problem. Besides, a

fundamental problem in attaining such goal is the problem of genetic encoding

(i.e. representation). How can we code for such large and complex dynamics?

How and what prior knowledge should be introduced to reduce the scale and

the complexity of the space?

The way a genome is represented has a signi�cant a�ect on the way Genetic

Algorithms (GA)[12] perform in �nding the solution to a particular problem.

GA works directly on the representation of the problem encoded on genome.

Thus, the search space within which the possible solution lies is directly inu-

enced by the representation.



prior-knowledge (domain-speci�c knowledge) to the representation of the prob-

lem. Although this reduces the scale and the complexity of the search space, it

also e�ectively introduces possible low level solutions to the problem in hand.

This form of human intervention makes it less attractive for a learning paradigm.



This expression is randomly produced for a problem with two input values.

*I1* and *I2* are the variables to be instantiated to the input values from the

patterns at each time of evaluation.

When generating the expressions a variable parameter called *percentage* is

used to impose how complex we want the expressions (i.e. longness or shortness

of the expressions). It can have values from 0 to 100. The higher the percentage

value the more complex the expression tends to be. In the experiments variable

*percentage* values are used depending on the complexity of the problem (in

the range of 75 to 85).

Internally each of the expressions are represented as threes. This structure

is used as a basis of applying genetic operators: crossover and mutation. A

random point in selected expression (tree) is chosen as crossover or mutation

point. More details will be given about this later. The typical structure of an

expression would look like as in Figure 1.

The expression:

(*I1* - ((*I2* + 1) * 0))

The tree representation:

�

@

@R

�

�	

*I1*

�

�

�	

@

@R

+

�

�	

@

@R

0

*I2*

1

Figure 1: Tree representation of an expression.

In order to balance the behavior of the expressions (i.e. the bias toward

positive expressions) half of the expressions are given a minus sign in front of

4



them. This is to achieve, potentially an equal chance of producing negative and

positive values when generating the expressions in the initial population.

2.2 Genetic Algorithms

The Schema Theorem developed by Holland[12] based on genetic search has been

proven to be useful in many applications involving large, complex and deceptive

search spaces [7]. So genetic search is most likely to allow fast, robust evolution

of genotypes encoding for potential learning rules as mathematical expressions.

Using Genetic Algorithms (GA) the model is implemented in LISP. The top

level structure of the system exhibit the following:

1. Initialize the population of expressions

2. Evaluate each expression and determine its �tness

3. Select expressions to reproduce more

4. Apply genetic operators to create new population

5. If the solution found or su�cient number of generations are created then

stop; if not go to 2.

The initialization technique is randomly generating mathematical expres-

sions. This introduces the least amount of domain speci�c knowledge into the

initial population through the variables used in the expressions. Unlike Koza's

genetic programmingapplied to particular problems there are no domain speci�c

functions. Only three mathematical functions are allowed; addition, subtraction

and multiplication.

In the following sections, I will describe the rest of the steps in applying GA.

2.2.1 Evaluation

In order to provide a basis to determine the �tness of the expressions, each

generation the expressions are evaluated using Lisp's "EVAL" statement by

instantiating input values for each of the patterns from the training set.

The �tness of an expression is based on its success in learning a speci�c task.

Since the target outputs are in the range of 0 to 1, the values, once obtained

after the evaluation of the expressions, are mapped to values between 0 and 1 by

using a squashing function. Several functions have been tested in this mapping

including logistic activation function used by [20]. One of the functions which

showed the most success, especially in mapping to binary target outputs, was

the following:

if value > 1 return 1

if value < 0 return 0

otherwise return the value

5



The �tness (success) of the individual expression is computed by testing them

on all training patterns, and dividing the total error by the number of patterns,

subtracting from 1 and multiplying by 100 yielding a �tness percentage between

0 and 100.

The expressions are ranked after each generation according to their success.

Those who are higher in the rank (higher scoring ones) are said to be most

�tting expressions.

2.2.2 Selection

The purpose of selection in GA is to give better opportunity of reproducing

to those members of the population which shows better �tness. For the model

this means to select those expressions with higher scores (beginning part of the

rank) and give them more chance to reproduce.

In the model, parent selection technique for reproduction is normalizing

by using an exponential function taken from Whitley's [23] rank-based selec-

tion technique. The function generates integer numbers from 1 to population

size. The generation of numbers exhibits characteristics of a non-linear function

where there is more tendency to produce smaller numbers (since higher scoring

expressions are on top of the rank).

The function is Z =



binary tree representations. In order to choose a point in this tree two di�erent

probabilities are used. One probability determines whether we want to go to

the left or right branches of the tree and the other determines whether to go

down more or to stay at that level. Figure 2 shows systematically how these are

implemented in the system.

if mutate

then create new expression

else

if at end node of either tree

or probability-down > cutoff

then swap parts of trees

else

if probability-left > cutoff

then go down on the left branch

and recurse

else

go down on the right branch

and recurse

Figure 2: Crossover and mutation algorithm.

When the point is chosen, the next thing to decide is whether there will be

a mutation. If there will be a mutation on both of the trees at that point a new

expression is added. Otherwise the parts of the trees side apart from that point

are swapped.

3 Results

In the preliminary experiments of the model, the emphasis has been on simplic-

ity to keep the computational requirements manageable whilst encouraging the

achievement of meaningful results.

The model is applied to several supervised learning tasks involving varying

di�culty of input-output mappings. The aim of the experiments is to observe

whether a learning rule would emerge during the course of evolution for a spec-

i�ed task. First experiments involved OR, AND and XOR problems.

7









-

((*I2* * *I3*) + (*I4* + *I3*)))

-

((((1 - *I1*) - (*I5* + *I5*)) + ((1 - *I5*) - (*I2* + *I3*)))

+

(0 + (*I3* - *I3*))))

-

(((0 + *I5*) + (0 * *I4*)) - (*I5* - *I4*)))

Success: 92 percent

2. ((*I2* * *I5*)

Success: 92 percent

3. (((((*I4* + *I2*) - ((*I2* * *I1*) + (*I5* + *I2*)))

+

(*I5* * *I3*)) + (((((((*I1* - *I4*) - (0 - *I5*))

+

(*I5* - *I4*)) + (*I2* + *I3*)) + (*I3* * *I5*))

-

((*I2* - *I5*) - (((0 - *I4*) + (0 - *I1*))

+

(*I4* * *I3*)))) - (*I3* - *I5*)))

Success: 100 percent

4. ((*I2* + (*I5* - *I2*))

Success: 100 percent

TASK 2

1. ((((*I4* - *I4*) - ((*I5* + *I2*) + ((*I1* + *I1*)

+

(*I5* - *I3*)))) + (*I3* - *I2*))

*

(((*I4* - 0.056697) * ((*I2* + *I2*) + (*I4* + 0.991166)))

*

(*I2* - *I5*)))

Success: 100 percent

11



2. (((*I1* - 0.49447) - ((*I4* + *I5*) - (*I2* + 0.588741)))

-

(*I2* + *I5*))

3. ((((((*I1* - *I5*) + (*I3* + *I4*))

-

((*I4* - 0.827728) + ((*I2* - *I5*) + (*I4* + 0.828348))))

*

(((*I3* - *I3*) + (*I1* - 0.416933))

*

((*I2* + 0.128969) * (*I2* - 0.160986))))

-

(*I1* - *I5*))

*

(((*I3* - 0.260095) + (*I5* - *I2*)) + (*I1* - *I2*)))

Success: 100 percent

4. ((((*I4* - 0.354676) * (*I2* + 0.183204)) - 0.050929)

*

(((*I5* + 0.614033) * ((*I5* - 0.366376) * (*I5* + 0.14586)))

-

(*I2* + *I1*)))

Success: 100 percent

TASK 3

1. (((((1 - *I3*) + (1 + *I2*)) + ((*I4* + *I2*)

+

(*I1* - *I4*))) - (*I4* + *I2*)) - (*I2* + *I1*))

Success: 100 percent

2. (((((((*I1* - *I2*) - ((*I4* * *I5*) + (0 - *I2*)))

+

((1 - *I5*) - ((*I3* - *I1*) - ((0 * *I2*)

+

(*I1* - *I3*))))) + (((*I1* * *I5*)

-

((((*I1* - *I5*) + (((0 + *I4*) - (1 * *I1*)) + (1 * *I4*)))

+

(1 + *I5*)) + (0 - *I1*))) + (1 + *I2*)))

12



+

(*I2* - *I4*)) + (0 - *I5*))

Success: 92 percent

3. ((((((*I4* - *I2*) - ((*I3* + *I3*) - (1 + *I2*)))

-

((*I5* * *I4*) + (0 * *I1*)))

-

(*I4* * *I3*)) + (*I1* + *I5*))

Success: 92 percent

In order to test how robust is the evolved learning rules for a given task, the

rules have also been tested on unseen exemplars. For example, of all the tasks

represented here, task four is the most di�cult one. When tested on unseen

patterns, the success of all of the four learning rules for this task remained at

100 percent.

TASK 4

1. (*I1* + ((*I4* + *I2*) + (*I5* - 0.893335)))

Success: 100 percent

2. ((*I1* + *I4*) * ((((*I4* + 0.350897) * (*I3* + 0.761547))

*

(((*I3* + 0.299322)+ ((((*I2* + *I1*) * (*I4* + *I4*))

-

(*I4* + *I2*)) - (*I3* + *I4*)))

+

(*I2* + *I2*))) + *I1*))

Success: 100 percent

3. (((*I1* + *I1*) - 0.781905)

+

13



(((*I2* + *I5*)

*

(((*I2* + 0.059971) * (*I3* + 0.113237)) * (*I2* - 0.331763)))

+

(((*I4* - 0.148709) * (*I1* + *I2*)) * (*I1* + *I4*))))

Success: 100 percent

4. ((*I1* - *I1*) - (((((*I4* + *I4*) - (*I4* - *I2*))

*

(((*I1* + *I1*) - (*I1* + *I4*)) + (*I4* + 0.28141)))

-

(*I1* + *I1*)) - (((*I4* + *I3*) * ((*I3* + *I5*)

+

((*I5* + *I3*) * (*I2* - *I4*)))) * (*I4* + 0.30423))))

Success: 100 percent

3.3 Parity Problems

A di�cult task for many learning algorithms are parity problems [20] where

the required output is 1 if the input pattern contains an odd number of 1's;

otherwise it is 0. This is a hard learning problem because very similar patterns

(even di�erent with one bit) may require completely di�erent output. The XOR

problem is one of the parity problems with size two. Although it took longer,

expressions successfully evolved to code solution to XOR problem. For three bit

parity problem it was di�cult to evolve a learning rule with 100 percent �tness

by using a population size of 30 (on the average 2 out of 10 runs would pro-

duce it). It would take around 15 generation to evolve a learning rule with 87.5

percent success (unsuccessful only on 1 out of 8 training pairs). Ninety percent

of the times a solution found for the three bit parity problem with a minimum

success level of 87.5 percent. The reason for this low level of performance is

probably due to small population size and insu�cient number of generations

as compared to di�culty of the problem. However, it is clear that the encod-

ing schema is capable of coding and �nding a solution for this di�cult task

though the encoding schema involves as minimal as possible prior knowledge

with respect to possible solutions of parity problems.

14



THREE BIT PARITY PROBLEM

1. ((*I1* + ((((*I1* + *I2*) - (*I3* + *I1*)) + (*I2* - *I3*))

*

((*I1* - 0.427487) * ((*I1* - *I2*)

-

((*I2* - 0.526565) + (*I1* - 0.69849))))))

Success: 100 percent

2. ((*I1* - 0.306492)

+

(((((((*I2* + *I2*) - ((*I2* - *I2*) + (*I2* + *I2*)))

*

((*I3* + *I1*) * ((*I1* - *I2*) + ((*I2* - 0.457992)

+

(((*I3* + 0.731704) * (*I2* + 0.775932))

-

((*I3* - 0.70112) - (*I2* + *I2*)))))))

+

(*I3* - *I2*)) + (*I1* - *I2*)) * ((*I2* - *I3*)

*

((*I3* - *I3*) - ((*I3* - *I3*) - (((*I2* - 0.773618)

+

(*I1* - 0.415343)) + (*I1* - 0.164109)))))) + 0.530177))

Success: 100 percent

The above solution to parity problems exhibit a complex language. For the

moment it is su�cient to observe that encoding schema is able to produce a

solution for such di�cult problems.

4 Conclusions

The experiments in this paper have shown that an encoding schema involving

random expressions



observed that using this encoding, evolution can provide a necessary basis for

the learning rules to emerge, although any domain speci�c knowledge in coding

the possible solutions are minimal. However, the research using this encoding

is at its development stage and there are several issues that must be improved

before going further.

As it has been shown in the previous section, it is possible that evolution

can result in several di�erent learning rules for the same task in hand. These

solutions are sometimes very similar to each other, but are sometimes a totally

di�erent way of expressing the same solution. This provides promising evidence

that the encoding schema would also be useful for more complex and larger

problems since it can always �nd an alternative expression for a learning rule

which is di�cult to express and discover. Normally, we would like to have at

least near optimal solutions without any redundant subexpressions. This can

be accomplished by either (1) starting from simple elementary expressions and

building up gradually or (2) eliminating redundant subexpressions from the �nal

solutions. In the next experiments these issues will be of major concern.

The experiments shown here have been kept simple in order to show impor-

tant characteristics of encoding schema and observe the evolution of learning

rules. Only supervised learning tasks have been tested. Although experimenting

with other learning methods is essential, the motivation of choosing supervised

learning is directly related to the future aims of the research.

In the future, the encoding schema will be used to solve some hard supervised

learning problems. These problems have been shown to be di�cult to solve

using conventional learning algorithms (i.e. back-propagation) due to the fact

that the rule of learning contained in the target that evolution

con






