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Abstract

As natural resources become less abundant, we naturally become more

interested in, and more adept at utilisation of waste materials. In doing

this we are bringing to bear a ploy which is of key importance in learning

| or so I argue in this paper. In the `Truth from Trash' model, learning
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`representation' of the way in which the overall system should generate hand-

shakes. We can even say that in capturing the central tendency of the hand-

shake inputs, the spring has naturally generated a generalisation of the relevant

behaviour, much in the manner of, say, the LVQ learning method of Kohonen

[1988].

This imaginative interpretation of the behaviour of the dangling glove may

not be quite within the spirit of the relevant learning models. But the fact that

it is not eliminated





Figure 3: Data for ECAL-97 Mobot Football Competition (Frederic Gruau,

WWW document).

behaviour described above. The mobot should acquire a disposition to `go for

the ball' only in situations when the sensory inputs indicate that this action

is appropriate. More precisely, we want the mobot to acquire a disposition to

produce two distinct actions, namely `go for the ball' and `do not go for the

ball'.

The advantage of situations in which the agent is in receipt of just two,

graded sensory signals (at any one time), is that they are amenable to geo-

metric visualisation. The behaviour to be acquired consists of a set of stimulus

responses (i.e., appropriate attack responses to speci�c combinations of stimuli).

These stimulus responses can be visualised as an instantiation of datapoints in

a 2-d sensory space, as in Figure 4. The two dimensions of the space here rep-

resent the possible levels of input from the two light sensors. Each datapoint

represents a stimulus combination in which one of the two actions is appropri-

ate. In the diagram, stimulus combinations appropriate for the `go for the ball'

action have been labelled `1' while stimulus combinations appropriate for the

`do not go for the ball' action have been labelled `0'.

Each datapoint's coordinates are a combination of sensory inputs. Its label

is the action which ideally should be produced in response | commonly called

the `target action' or `target output'. Thus, the diagram shows in pictorial terms

which actions are appropriate for which sensory inputs. In e�ect, it allows one

to visualise the pattern of stimulus responses which must be implemented in the
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automatically. The target action for an unseen case can be readily predicted

to be the action associated with seen datapoints from the same region. This

generic approach is termed boundary-based (BB) learning, or, less formally,

`fence-n-�ll' learning.

6 Rogues gallery of boundary-based learning meth-

ods

Boundary-based learners can be divided up into two main groups: methods

which add new boundaries and methods which manipulate existing (i.e., prede-

�ned) boundaries. These groups can then be subdivided depending on the type

of boundary utilised. Some of the best known BB methods can be characterised

as follows.

� PERCEPTRON [Minsky and Papert, 1988] manipulates a single, linear

boundary.

� ID3 [Quinlan, 1983] introduces an arbitrary number of axis-aligned, ex-



Utilising simpler bounding constructs reduces the complexity of the learning

process. But there is a hidden and signi�cant cost. The approach succeeds

if and only if datapoints with the same action label tend to cluster together

in geometrically simple regions. Boundary-based methods e�ectively pin their

hopes on the assumption that datapoints of the same type will cluster together in

the same parts of the sensory space. The question is, then, can this assumption

can be relied upon in general? Or are there situations in which birds of a feather

tend not to ock together?

7 Alignment

Di�erent sensory mechanisms respond to di�erent phenomena, i.e., di�erent

properties and objects of the environment. But not all sensors respond to all

phenomena. Thus there are various relationships a particular sensory mecha-

nism S may have with some particular phenomenon P . These can be charac-

terised in terms of variations in sensor alignment:

perfect alignment S explicitly measures or detects P , i.e., signals from S

correspond directly to states of P .

perfect non-alignment S does not respond to P in any way.

partial alignment P has an indirect impact on S, i.e., signals from S are

a�ected by states of P but not in any direct, 1-to-1 way

To illustrate these cases, imagine that our footballing Khepera mobot is

equipped with a light sensor whose outputs vary monotonically with the amount

of light arriving at the sensor surface. With respect to the phenomenon of `light

intensity', the sensor is perfectly aligned. With respect to the phenomenon

of `wind speed' the sensor is perfectly unaligned. And with respect to the

phenomenon of `attack opportunity' (as described above) the sensor has to be

considered partially aligned.

Now consider an `obstacle' sensor. This is perfectly aligned with respect to

obstacles, perfectly unaligned with respect to light and partially aligned with

respect to `threat-of-capture' (i.e., the state of play in which an opponent mobot

is about to capture the ball).

A partially aligned sensory signal might seem to be much the same as a noisy

signal. But alignment and noise are quite di�erent things and the alignment

classi�cations should, in fact, be treated as relating to original, noiseless signals.

Thus noise has no relevance to the alignment taxonomy.

8 Salience

For a given behaviour, some properties/objects of the environment are salient

and some are not. With respect to a feeding behaviour food may be salient but
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sand is probably not. With respect to tightrope-walking, gravity is probably

salient but UV radiation is probably not. If, in a particular learning scenario,

a sensor is perfectly aligned with a phenomenon which is salient for the target

behaviour, then particular signals from that sensor will obviously tend to be

associated with particular actions. In geometric terms, this means that all

the datapoints which belong to particular values (e.g., are in the same row or

column) of the relevant dimension in the sensory space will all have the same

output label. In a 2d sensory space, if both sensors are perfectly aligned with

salient phenomena, then points with the same label will necessarily `cluster

together'.

BB methods, then, are guaranteed to succeed if utilised sensors are aligned

with salient phenomena. If the sensors are only partially aligned, clustering is

not guaranteed and BB methods are not guaranteed to succeed. If the sensors

are perfectly unaligned, then any learning method should fail since it is attempt-

ing to operating without any salient information about its environment.

2

BB learning methods, then, work well if and only if sensors are aligned. In

classical Machine Learning, this is expressed by saying that empirical learning

methods work well if and only if a `suitable' input representation is used [Di-

etterich, London, Clarkson and Dromey, 1982]. But the reliance on perfectly

aligned sensors may pose problems for the cognitive scientist.

Complex agents need to be able to learn many behaviours which are likely to

be contingent upon a wide range of phenomena. Engineers committed to use of

BB methods face the prospect of having to equip such agents with large numbers

of perfectly aligned sensors. Even if this can be done without irretrievably

compromising the agent's viability, there is still the problem of where the sensors

are going to come from in the �rst place. It is not unreasonable to assume that

sensory systems for many salient phenomena will remain beyond the `state of

the art' for the forseeable future. Scientists committed to use of BB models

encounter a more severe variation of the same problem. Nature tends to exploit

general purpose sensory mechanisms (vision, audition, olfaction etc.) which

tend to be partially aligned with a wide-range of salient phenomena. Thus

explanatory models which rely on the utilisation of perfectly aligned sensors

appear to have little hope of achieving full generality.

The implication of this should be that perfectly aligned sensors play a rather

limited role in both engineering-oriented and explanation-oriented cognitive sci-

ence. Unfortunately, due to the widespread utilisation of computer modelling,

the opposite seems the case. The researcher who wishes to create an arti�cial

agent (or a model of a natural agent) which learns a behaviour which happens

to be contingent upon phenomena not perfectly aligned with any realistic sen-

sory mechanism is likely, as a preliminary exercise, to construct a computer

2

The distinction between aligned sensory information and partially aligned sensory infor-

mation is simply the `sensory' version of the distinction made in [Clark and Thornton, 1997]

between statistical and relational data e�ects. It can also be viewed as a variant of the

distinction between statistically independent signals and statistically dependent signals.
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simulation. Surprisingly enough, this may appear to demonstrate that the be-

haviour can be successfully learned using a standard (BB) learning method, eg.

Backpropagation or C4.5. Papers may be published and readers duly impressed.

However, on closer inspection, it may well turn out that the successful learn-

ing performance is really attributable to the fact that the programmer has

equipped the simulated agent with special-purpose (i.e., perfectly aligned) sen-

sors, only feasible within the context of computer simulation. The researcher

in this case is said to have utilised magic sensors. The work has not really

demonstrated a realistic way in which the relevant behaviour can be learned. It

has merely provided an illustration of the way in which computer simulations

can mislead.

Work based on simulations which utilise magic sensors should, by
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Figure 6: Implicit clustering through derivation of skeletal exemplars.

11 Worked example

The operation of the SECS method can be illustrated using a worked example.

To begin with, note how the skeletal exemplars method introduces an implicit

clustering of the attack-opportunity training set,







12 The role of the Residual Agent

The TFT model provides a picture of a way in which an agent might learn

behaviours contingent upon phenomena not directly sensible by realistic sen-

sory mechanisms, without the need for covert introduction of magical sensory

equipment. The main avour of the idea is the utilisation of the noise or statis-

tical trash which arises at the `interface' between a particular partial-alignment

relationship and a particular behaviour.

Whether the model has any engineering value is yet to be determined. How-

ever, it does have a novel explanatory avour that may make it attractive to

those more interested in description and conceptualisation. The nuts and bolts

of the model are essentially `algorithmic' and `computational'. But the nature of

the processes described are su�ciently primitive that they could be re-rendered

in a connectionist or neural-networks paradigm. The model is not `representa-

tional' in the classical sense since it makes no use of explicit representational

structures (frames, databases, default inheritance, explicit symbols and the like).

And yet it does suggest a role for the process of representation since it shows

how a learning agent can construct internal sensors which measure external, but

implicitly-sensed properties of the environment.

As I have previously argued [Thornton, 1996a] these inner sensors are con-

veniently viewed as virtual sensors. Insofar as their signals are used by the

`residual agent' (i.e., the parts of the agent not engaged in implementing the

virtual sensor) as a sign of an external phenomenon, they have a clear, though

slightly counter-intuitive representational status. But to understand the nature

of this idea, we must be ready to see the agent as divisible into two parts: the

part which implements the sensor and the part which utilises its signals. Once

this leap has been made, the TFT model is revealed as providing an interest-

ing route via which representational models of cognition might be grounded in

non-representational, potentially neural processes.

13 Concluding comment: The Neat-Scru�y Mind

Learning in the TFT model is viewed as something which builds veridical rep-

resentational signal sources out of what is, in e�ect, a cascade of kluges. The

results of a TFT process are thus something like a `Rube Goldberg' machine |

it works OK in practice but on close inspection, the innards turn out to be a

weird assembly of uninterpretable �xes. An interesting property of this view-

point is the way in which it relaxes the tension between the `neat' and `scru�y'

philosophies of cognition. It suggests that in certain situations cognisers can be

viewed as attempting to develop `scru�y' means of supporting `neat' pretences

about the ways in which they are coupled to their environment. On this view,

if cognition can be said to be anything in particular, it might be said to be both

neat and scru�y at the same time.
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