Evolving robust



evolving neural controllers which operate under these
conditions, i.e. at timescales faster than that of perfor-
mance, and whose elements tend to compensate for long
term patterns of activation by keeping their average acti-
vation as close as possible to a middle range, thus making
it difficult for action relevant information to be stored in
such individual elements. In order to facilitate under-
standing of the results and comparative analysis and
for other reasons explained below) a simple task of pho-
totaxis is chosen. The next section further discusses the
conceptual and practical motivations of this work. Sec-
tion 3 describes the experimental setup and the neuron
model which is a simple extension of a continuous-time
network architecture. The results are presented in sec-
tion 4 which shows that evolved controllers are highly
robust to radical sensor perturbations such as exchange
of sensor position and removal of one sensor. For ev-
ery single case studied robots were able to perform the
desired task as long as they had at least one sensor in
the frontal half of the body. Robustness decreases as the
allowed timescale of oscillation is made closer to that of
performance. An analysis of the evolved strategy is also
presented in this section. It is suggested that fast os-
cillations are not sufficient for robustness but that long-
term homeostatic behaviour of neural activation is also
necessary. This claim is supported by evolving a net-
work of fast non-homeostatic FitzHugh-Nagumo oscilla-
tors which turn out to be much less robust. The final
section discusses the implications of these results.

2. Motivations

This is an exploratory piece of work aiming at generating
hypotheses. The motivations are conceptual as well as
practical.

An animal nervous system is a complex network of
relational patterns of electrochemical activity which is
coupled with the rest of the organism and its



A large part of current work in understanding
central pattern-generating circuits CPGs) is fo-
cused on their role in the generation of rhyth-
mic behaviour such as locomotion and respira-
tion EEarder and Bucher, 2001).  This is also true
in  robotics Beer et al., 1992,  Fujii et al., 2001,
Ijspeert et al., 1998, Williamson, 1998). Rhythmic
neural activity not necessarly associated with CPGs)
may also be involved in the generation of patterns of
behaviour or perception that are non-rhythmic and
happen at significantly longer timescales that those of
oscillations Rodriguez et al., 2001). This aspect has
been less explored but it should be of considerable
practical interest in robotics. If a system is synthe-
sized to produce a large scale pattern with a typical
timescale which is much longer than the timescale of
its micro-components, then certain degree of robustness
of performance should be expected, as, by design, no
single micro-component can take a large share in the
control of the overall system — the faster micro-timescale
would not allow this — and so the system must make
use of long range synergies that tend to be highly
robust. Similar phenomena have been demonstrated in
different contexts, Di Paolo, 2001, Thompson, 1996)
but apparently has not been applied in robotics so far.

Whether such robustness could also happen in robots
is one of the main angles of investigation of this work.
For this purpose, a task that is not intrinsically rhyth-
mic has been chosen deliberately. P19Td][ delib)



angle between sensors is always of 120 degrees 60 de-
grees each to the body central midline).

Eotors can drive the robot backwards and forwards in
a 2-D unlimited arena. Robots have a very small mass,
so that the motor output is the tangential velocity at the
point of the body where the motor is located. The trans-
lational movement of the whole robot is calculated using
the velocity of its center of mass the vectorial average
of the motor velocities), and the rotational movement by
calculating the angular speed the difference of the tan-
gential velocities divided by the body diameter). There
is no inertial resistance to either form of movement.

Light from point sources impinges on sensors with a
local intensity proportional to the source intensity and
the inverse square of the distance from sensor to source.
The model includes shadows on sensors produced when
light is occluded by the body i.e., a sensor angle of ac-
ceptance of 180 degrees). Input current from
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Figure 2: Average relative robustness (measured as propor-
tion of unperturbed
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needed to test the usefulness and limitations of this idea
and explore its relation to other not-so-distant issues
such as plasticity and adaptivity.
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