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Abstract 
 
There are some signs that a resurgence of interest in modeling constitutive autonomy is 
underway. This paper contributes to this recent development by exploring the possibility 
of using evolutionary robotics, traditionally only used as a generative mechanism for the 
study of embodied-embedded cognitive systems, to generate simulation models of 
constitutively autonomous systems. Such systems, which are autonomous in the sense 
that they self-constitute an identity under precarious conditions, have so far been elusive. 
The challenges and opportunities involved in such an endeavor are explicated in terms of 
a concrete model. While we conclude that this model fails to fully satisfy all the 
organizational criteria that are required for constitutive autonomy, it nevertheless serves 
to illustrate that evolutionary robotics at least has the potential to become a valuable tool 
for generating such models. 
 
Keywords: artificial life, autopoiesis, evolutionary robotics, autonomy. 
 
 
 
 
 
 
 
 
 
 
 
Note: This manuscript was originally targeted at the audience of this year’s Artificial Life 
XI conference, which was held in August in Winchester, UK. Though it ended up being 
rejected both as a paper and as an abstract, it might still be of interest to others, and is 
therefore made available here with only minor alterations. 
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Prologue 
 
It is the year 1991, Paris, and in their introduction to the first European Conference on 
Artificial Life, the organizers Francisco Varela and Paul Bourgine issue a stern warning to 
the field: “We reiterate that in order to avoid falling into the trap of a mere fashionable 
buzz word, or a fascination with technological wizardry without direction, it is important 
not to lose sight of the deep issues that animate this resurgence of research. Our view, as 
we stated at the outset, is that AL finds its élan because it (re-)discovers the central role 
of the basic abilities of living systems as the key to any form of knowledge […] our 
stance is that autonomy is the emblematic quality which needs to be unfolded into clear 
and practical concepts” (Bourgine & Varela 1992).  
 
The conference series is thus inaugurated with a clear message: the defining goal of 
artificial life research is to gain a better scientific understanding of the kind of autonomy 
that is characteristic of living systems. Bourgine and Varela (1992) conclude their 
introduction with the rather optimistic outlook that “theoretical, conceptual and 
engineering progress is quite possible in notions that until recently were dismissed as 
merely metaphorical” and that “the practice of autonomous systems is not any longer a 
matter of mere vague speculation in contrast to a well developed theory of control 
systems”. Today, 17 years later, we again find ourselves in Europe in the context of the 
Artificial Life conference series which, for the first time in its 20 year history, is held 
outside the USA. We would like to take advantage of this occasion to ask: was Bourgine 
and Varela’s warning heeded? Was their optimistic outlook warranted? Are we any closer 
today to a well developed theory of autonomous systems? How can we know?  
 
1. Introduction 
 
In this paper we want to address the question of whether we can we take advantage of the 
progress that has already been made in synthesizing and analyzing the dynamics of 
embodied-embedded cognition in order to advance our understanding of constitutive 
autonomy. In particular, we will analyze the suitability of evolutionary robotics as a 
method to generate models of constitutively autonomous agents. We first address some 
theoretical and methodological issues, and then discuss their implications in terms of a 
concrete simulation model. While this model fails to satisfy all the necessary criteria for 
constitutive autonomy, it nevertheless points toward the possibility that our proposed re-
conceptualization of evolutionary robotics might provide a way of overcoming many 
perceived shortcomings of using this method. 
 
1.1 Two conceptions of autonomy 
 
How much progress has been made toward a better understanding of autonomous systems 
in the artificial life community? The problem is that the answer to this question depends 
to a large extent on what we mean by ‘autonomy’. However, a recent literature review of 
artificial life research has confirmed what many people in the field may already suspect, 
namely that there is no widely accepted definition of autonomy (Froese, et al. 2007). In 
order to address some of the confusion which this ambiguity entails, a conceptual 
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distinction between behavioral and constitutive autonomy was advocated in that paper. 
The former is intended to capture the fact that the notion of ‘autonomous robotics’ has 
essentially become a synonym for any methodology aimed at synthesizing artificial 
‘agents’ with situated behavior for practical engineering or scientific purposes. In this 
context the label ‘autonomy’ is generally used to indicate that the behavior of the system 
is independent of the experimenter in some relevant sense. The notion of constitutive 
autonomy, on the other hand, was introduced to capture a much more specific use of the 
term, namely when it is used to refer to the ability of certain systems to self-constitute an 
identity under precarious conditions. Research in this latter context is generally more 
focused on understanding autonomy in relation to biological systems. 
 
Which of these two uses of the concept ‘autonomy’ did Bourgine and Varela have in 
mind? If we interpret “Towards a practice of autonomous systems”, which is the title of 
their introductory paper and the slogan of the European conference series as a whole, as 
referring to the practice of synthesizing artificial systems for the study of situated and 
embodied cognition, then there has clearly been progress toward the establishment of just 
such a research program (e.g. Harvey, et al. 2005; Beer 2003). But are the systems that 
are produced in this manner actually models of autonomous systems in the sense which 
Bourgine and Varela originally intended? 
 
That this is not the case is clear from the way in which they introduce the notion of 
autonomy in relation to actual living creatures, which leads them to claim that “autonomy 
in this context refers to their basic and fundamental capacity to be, to assert their 
existence and to bring forth a world that is significant and pertinent without being pre-
digested in advance” (Bourgine and Varela 1992). Moreover, as an example of the 
conceptual unfolding of ‘autonomy’ they refer to the “Closure Thesis”, which states that 
every autonomous system is operationally closed. Varela (1979, p. 55) provides us with 
an explicit description of this view: 
 

An autonomous system can be defined in operational terms as a system with an 
organization that is characterized by processes such that “(1) the processes are related 
as a network, so that they recursively depend on each other in the generation and 
realization of the processes themselves, and (2) they constitute the system as a unity 
recognizable in the space (domain) in which the processes exist”. 
(Varela 1979, p. 55) 

 
The paradigmatic example of such constitutive autonomy is found in the chemical 
domain in the form of the metabolic self-production of the living cell, an organizational 
property which has come to be known as autopoiesis (Maturana and Varela 1980). How 
much progress has been mode toward a practice of such constitutively autonomous 
systems?  
 
1.2 Reappraising the progress in artificial life 
 
Unfortunately, Bourgine and Varela’s (1992) original vision for the artificial life 
community has been diffused over the years. Nevertheless, there exists a small but 
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dedicated group of researchers in the field who specifically engage with the challenge of 
modeling biological autonomous organizations.  
 
Since the paradigmatic example of constitutive autonomy is the living cell it should come 
as no surprise that many attempts of producing a model of the minimal biological 
organization have focused on simulations of primitive cells in simplified chemical 
domains (e.g. Ono and Ikegami 2000; Fernando 2005). Interestingly, work in this area 
has already begun many years before the proper inception of the field by Langton (1989) 
when Varela, Maturana and Uribe (1974) developed a cellular automata model of 
autopoiesis. This approach has given rise to a tradition of computational autopoiesis 
(McMullin 2004), and it has been shown that even the investigation of very simple 
oscillatory cellular automata structures can be useful in explicating some of the 
theoretical and conceptual issues of autopoiesis (e.g. Beer 2004). In addition, the original 
model by Varela and colleagues has recently been expanded to include self-movement 
(Ikegami and Suzuki 2008), as well as being extended to three dimensions (Bourgine and 
Stewart 2004). Moreover, a more realistic study of the origins of minimal cells is 
beginning to be possible with the development of more plausible models of artificial 
chemistry (e.g. Ruiz-Mirazo and Mavelli 2008) and attempts to synthesize autopoietic 
systems with actual chemistry (Luisi 2003).  
 
More recently, the situation has started to look even more hopeful, as evidenced for 
example by two special journal issues devoted to the topic of autonomy (Barandiaran and 
Ruiz-Mirazo 2008; Di Paolo 2004). These special issues are especially valuable 
contributions because they demonstrate that the methodological toolbox for synthesizing 
and understanding autonomy is being expanded in new directions. 
 
Nevertheless, despite these important efforts it is still the case that there has been 
relatively little progress on the problem of constitutive autonomy, especially when 
compared to the impressive advances that have been made in synthesizing and 
understanding the behavioral dynamics of artificial cognitive systems (e.g. Harvey, et al. 
2005; Beer 2003). Of course, that there has been a shift of focus away from Varela and 
Bourgine’s original vision for the field does not necessarily entail that researchers have 
become consumed by a “fascination with technological wizardry without direction” 
(Bourgine and Varela 1992). On the contrary, the focus on cognition in the artificial life 
community has clearly led to valuable insights into the dynamics of adaptive behavior, 
and has also improved our theoretical understanding of dynamical systems in general 
(e.g. Beer 2003; 1997). These are not only important advances in their own right, but the 
mathematical tools which are being developed to analyze the complex dynamics of 
artificial cognitive systems are bound to be helpful for the study of the dynamics of 
constitutive autonomy as well.  
 
However, there is also a problem: it appears that the kinds of methods which the field 
uses to synthesize artificial cognitive systems are unsuitable to generate constitutively 
autonomous systems (Froese, et al. 2007). Indeed, it is standard practice in evolutionary 
robotics, which has for many researchers become the generative mechanism of choice to 
produce cognitive systems of interest, to abstract away from the constitutive autonomy of 
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biological systems. While this abstraction is undesirable from a scientific point of view 
because cognition and constitutive autonomy are deeply intertwined in all living systems, 
it is nevertheless necessitated by the fact that “a complete account of this situation would 
require a theory of biological organization, and the theoretical situation here is even less 
well developed than it is for adaptive behavior” (Beer 1997).  
 
It thus appears that Varela and Bourgine might have been slightly too optimistic when 
they characterized artificial life as a field ready to be committed to the explication of a 
well developed theory of biological autonomy. Indeed, despite some important advances, 
today such a theory of biological organization is still in need of significant further 
development and concretization, in particular through the formulation and analysis of 
theoretical models (Beer 2004).  
 
2. Methodological issues 
 
Given that our understanding of how to synthesize and analyze simulation models of 
complex dynamics has advanced faster for models of minimal cognition compared to 
constitutive autonomy, it is natural to ask whether we can use insights from the former to 
move the latter forward. This section therefore begins by outlining some challenges that 
can be raised against the possibility of using evolutionary robotics to generate models of 
constitutive autonomy. For this critique we will draw on the extensive work on biological 
autonomy done by the San Sebastian group led by Alvaro Moreno (e.g. Moreno, et al. 
2008; Barandiaran and Moreno 2006; Moreno and Etxeberria 2005; Ruiz-Mirazo and 
Moreno 2004; Ruiz-Mirazo and Moreno 2000; Moreno and Ruiz-Mirazo 1999; Moreno, 
et al. 1997). We then introduce a novel way of conceptualizing evolutionary robotics as a 
more general generative mechanism and argue that this subtle shift in perspective can 
potentially help us to address some of the methodology’s perceived shortcomings. 
 
2.1 Problems with evolutionary robotics 
 
One of the main projects of the San Sebastian group has been to attempt a naturalization 
of the concept of autonomy by developing a biological account that is well grounded in 
the universal laws of physics and chemistry. Starting from a detailed consideration of the 
special material and energetic requirements of metabolism (e.g. Moreno and Ruiz-Mirazo 
1999), they introduce the notion of basic autonomy to denote any system which has the 
capacity to manage the flow of matter and energy through it so that it can, at the same 
time, regulate, modify, and control: (i) internal self-constructive processes and (ii) 
processes of exchange with the environment (Ruiz-Mirazo and Moreno 2004). This 
conception of ‘basic autonomy’ leads them to the claim that the success of attempts to 
create artificially minimal autonomous systems is strongly linked to efforts of creating 
simple metabolic systems (Ruiz-Mirazo and Moreno 2000).  
 
Accordingly, evolutionary robotics is rejected as a viable methodology, because it does 
not deal with systems whose physical organization is self-modifiable, in favor of artificial 
synthesis of chemical systems (Ruiz-Mirazo and Moreno 2004). More precisely, it is 
claimed that the difficulty with the evolutionary robotics approach is its reliance on 
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building blocks which are constitutively inert aggregates, since the material structures 
which support the operational level of computer simulations are entirely passive (Moreno 
and Ruiz-Mirazo 1999).  
 
Evolved artificial systems can thus never achieve (full) constructive closure because the 
inertness of their building blocks entails that the required external degree of design 
complexity must always be greater than the internal one. In natural systems this is not a 
problem because such systems always start with “building blocks endowed with certain 
interactive capacities, derived from their material structure, that is to say, with 
intrinsically active elements whose combinations may generate new forms of activity” 
(Moreno and Etxeberria 2005). Moreover, since evolutionary robotics does not make 
explicit the complex underlying material organization of living systems, it cannot lead to 
models which include the thermodynamic requirements necessary for basic autonomy 
(Moreno and Ruiz-Mirazo 1999). This leads them to conclude that basic autonomy 
cannot be realized but from a highly complex chemical organization and that, as a 
consequence, we should not expect that work in evolutionary robotics will generate forms 
of agency similar to that in living ones (Moreno and Etxeberria 2005). 
 
One way to respond to these considerations is to point out that the notion of ‘basic 
autonomy’ is actually only concerned with one particular kind of constitutive autonomy, 
namely the metabolic self-construction of living systems. As such we can accept their 
criticism of evolutionary robotics in the sense that it is not the method of choice for 
synthesizing actual living systems. However, we will later argue that there is no a priori 
reason why it cannot be used as a more general generative method for the creation of 
models which make explicit the requirements of a material organization – a model, after 
all, should be measured by its usefulness in helping to improve the understanding of a 
given problem even when it fails to capture essential elements since often this very 
failure can be informative. 
 
Another possible response, and the one which we will develop more concretely in this 
paper, is to argue that a supposed failure in terms of ‘basic autonomy’ does not rule out 
the possibility that evolutionary robotics might still be a suitable method for generating 
other forms of constitutive autonomy. One particularly attractive target, for example, is 
the constitutive autonomy found in the cognitive domain of the nervous system (Varela 
1991). While it is of course the case that the cognitive abilities of living systems are 
deeply intertwined with their metabolic self-construction (Moreno, et al. 1997), it might 
also be possible to give an account of cognitive autonomy that is decoupled from such 
material requirements.  
 
Barandiaran and Moreno (2006) have recently proposed such a “minimally cognitive 
organization program” which focuses on the organizational requirements of cognition on 
the basis that the nervous system is hierarchically decoupled from the underlying 
processes of metabolic self-construction. In other words, while metabolism produces and 
maintains the architecture of the nervous system, it nevertheless minimizes its local 
interference with the nervous system in such a way that we can speak of the constitution 
of a new dynamic domain that consists of both its internal dynamics and its embodied 
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sensorimotor coupling with the environment. Their attempt at specifying the 
requirements of constitutive autonomy in terms of a dynamic organization in the 
cognitive domain makes this approach especially amenable to an evolutionary robotics 
program of research. 
 
2.2 Organismically-inspired robotics 
 
There exists a line of evolutionary robotics research called “organismically-inspired 
robotics” (Di Paolo 2003) that advocates the necessity of using models that incorporate 
elements of such cognitive organization. Indeed, the introduction of homeostatic 
mechanisms into the evolving ‘agents’ has resulted in models that allow us to begin 
exploring the possibility of the autonomous constitution of an identity in the combined 
neural and behavioral dynamics of the evolved systems (e.g. Di Paolo and Iizuka 2008; 
Iizuka and Di Paolo 2007). In terms of our scientific understanding of biological 
autonomy and cognition these first examples represent a significant advance over work 
which solely focuses on functional aspects of these biological phenomena.  
 
However, while the organismically-inspired approach provides an important first step 
because it enables us to investigate the emergence of self-maintaining dynamic cognitive 
structures that are comprised of neural and behavioral elements, it falls short of the full 
requirements for the self-constitution of a cognitive system. Barandiaran and Moreno 
(2006) hypothesize that “an autonomous level of normativity emerges when neural 
dynamics have a self-maintaining organization, i.e. when the web is homeostatic and 
behavior is directed towards the self-maintenance of the global stability conditions of the 
web (and not only of a unique dynamic structure)”. The problem here is that 
organismically-inspired robotics still requires that the experimenter provides the 
evolutionary algorithm with the global identity of the system which for the purposes of 
the model is to count as the cognitive ‘agent’. 
 
Thus, there remains one important issue that needs to be addressed even if we do change 
the evolutionary robotics method so that it explicitly models material or cognitive 
organizational requirements. It could be argued that this method is still unsuitable for 
studying constitutive autonomy because the evolutionary algorithm presupposes the 
existence of individual ‘agents’ for selection and the generation of new individuals 
(Froese, et al. 2007). In other words, evolutionary robotics cannot be used to generate 
models of systems which self-constitute their own identity because what counts as an 
individual ‘agent’, i.e. what constitutes its systemic identity, is always already pre-
determined by the experimenter. The main contribution of this paper is to argue that this 
seemingly insurmountable limitation of the method can be avoided by a relatively simple 
shift in perspective. 
 
2.3 Evolutionary robotics: a re-conceptualization 
 
How can we use evolutionary robotics to generate models of systems with constitutive 
autonomy if the method requires that we specify the identity of the systems that it evolves 
in advance? At first sight this appears to be a fundamental limitation, one which holds 
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independently of whether we explicitly include material and/or cognitive organizational 
requirements or not. What can be done? 
 
Ironically, a solution to this dilemma becomes available as soon as we seriously accept 
the criticism of the San Sebastian group that the artificial systems being evolved with the 
use of evolutionary robotics cannot be said to be models of biological agency (e.g. 
Moreno and Etxeberria 2005). The solution is therefore a conceptual shift: by dropping 
the label ‘agent’ to denote what is being ‘evolved’ we can sidestep the fundamental 
problem of pre-defined identities. Instead, we conceive of what is being selected as a 
desired property of some kind of model component. Indeed, in order to further minimize 
any potential confusion entailed by this conceptual shift we will speak of ‘optimized’ 
rather than ‘evolved’ components and of ‘desirable’ rather than ‘fit’ solutions. We can 
thus re-conceptualize the ‘evolutionary’ algorithm as a more general generative 
mechanism, one which can be used for optimizing models of dynamical substrates with 
certain desirable properties: 
 
This shift in perspective entails that the evaluation function can now be geared toward 
the optimization of a dynamical substrate with initial conditions that favor the emergence 
of an autonomous system which self-constitutes its own identity. 
 
Thus, there are two important implications of this shift in perspective: (i) there is no 
longer any problem of the evolutionary robotics method being limited to ‘agents’ with 
pre-defined identities, and (ii) whether a particular simulation model actually includes 
any systems that are characterized by constitutive autonomy must be determined on a 
case by case basis. The second implication also presents a methodological problem. 
However, rather than being a fundamental limitation of the method, it presents a useful 
challenge in that it forces us to sharpen our conceptual requirements for identifying 
constitutive autonomy and encourages us to devise methods which allow us to reliably 
distinguish such systems.  
 
To demonstrate the potential of this conceptual move in more concrete terms we will now 
analyze a recent simulation model of coordination dynamics that has been generated 
using the standard evolutionary robotics methodology. This will allow us to hone our 
intuitions about what dynamical self-constitution might or might not be. 
 
3. The simulation model 
 
The simulation model outlined in this section is based on recent work by Froese and Di 
Paolo (2008). While the original model was conceived of within the traditional 
evolutionary robotics framework, namely to investigate a particular aspect of the 
dynamics of social cognition, here we will describe it only with the terminology 
developed in the previous section so as to avoid any potential confusion.  
 
In essence, Froese and Di Paolo (2008) used an evolutionary robotics method to generate 
a simulation model of a system, comprised of two dynamical components, that is capable 
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of reliably establishing and maintaining an oscillatory pattern of movement under noisy 
conditions. A simple schematic of the simulation model is depicted in Figure 1.  
 

 
 

Figure 1: A schematic view of the simulation model. The two identical components are 
40 units wide, only able to move in a horizontal direction, and equipped with a single 
on/off interface at their centre. They face each other in an unlimited continuous 1-D 
space. For more detailed information see text, and Froese and Di Paolo (2008). 
 
In the evolutionary process the desirability of the model was measured according to how 
far away from their initial starting positions the components came into contact. This 
evaluation criterion optimizes the dynamics of the two components in a complex manner, 
namely such that their activity results in mutual localization, convergence on a target 
direction, and coordinated movement in that direction. Since the components are started 
in opposite orientation (‘up’ vs. ‘down’), it is not possible for the evolutionary algorithm 
to result in the hard coding of any trivial solution (e.g. ‘always move left’). In addition, 
this task is made even more non-trivial since ‘sensory’ stimulation only correlates with 
the overlapping of position (when the centers of the components are less than 20 units of 
space apart); it does not convey the direction or speed of movement of the other 
component. Moreover, if the components are not in direct contact with each other, the 
environment holds no information about their relative positions. 
 
The basic elements of the simulation model can be described as follows: There are two 
components which face each other in an unlimited continuous 1-D space (i.e. one 
component faces ‘up’ and one component faces ‘down’). Distance and time units of the 
simulation are of an arbitrary scale. Each component can only move horizontally. In 
terms of non-linear interaction, one on/off interface is located in the centre of each 
component. The interface is activated (set to 1) when the components cross each other, 
otherwise it is set to 0. Interface and movement noise is introduced into the simulation in 
order to increase the robustness of the evolved coordination pattern. In order to further 
increase the robustness, the initial relative displacement between the components varies 
between trials (range [-25, 25]).  
 
The two components are controlled by two identical continuous-time recurrent neural 
networks (CTRNNs), as described by Beer (1995), each consisting of 3 fully-connected 
nodes with self-connections. The time evolution of the node activation is determined as 
follows: 
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In this equation yi represents the activation of node i, zi is the node output as calculated by 
the standard sigmoid function, t i (range [1, 100]) is its time constant, bi (range [-3, 3]) is a 
bias term, and wji (range [-8, 8]) is the strength of the connection from the node j to i. Ii 
represents the input to node i and S is the input gain. The total number of nodes N is set to 
3; there are no hidden nodes (all nodes are affected by changes to the interface). The 
input is calculated by multiplying 1/0 (on/off) by an input gain parameter S (range [1, 
100]), and this is applied to all nodes. There is one node, which only receives input and 
does not directly affect the external position, and two nodes for controlling movement; 
one for leftward and the other for rightward velocity. Each velocity is calculated by 
mapping the output onto the range [-1, 1] and then multiplying it by an output gain 
parameter (range [1, 50]). The overall component velocity is calculated as the difference 
between the left and right velocities. The time evolution of the simulation environment 
and each component’s dynamics is calculated by using Euler integration with a time step 
of 0.1.  
 
The system of components is generated by using a simple genetic algorithm (GA) which 
is based on the microbial GA, a steady-state GA with (rank-based) tournament selection 
(Harvey 2001). Until some termination criterion is reached, two solutions of the 
population are chosen at random, both have their desirability evaluated, and while the 
‘winner’ of the tournament remains unchanged in the population, the ‘loser’ is replaced 
by a slightly mutated copy of the ‘winner’. We define a generation as the number of 
tournaments required to generate a number of offspring equal to the population size. The 
population size is set to 40 and the algorithm terminates after 5000 generations. For a 
more detailed description of the evolutionary algorithm, see Froese and Di Paolo (2008). 
 
It was possible to optimize models which are highly successful at shaping the dynamics 
of the components so that they come into contact as far away as possible from their initial 
positions (i.e. a long distance traveled together). Interestingly, the components interact in 
such a way that they always end up with positive relative displacement after their initial 
localization. With this arrangement the complexity of the task has been reduced 
considerably: while perturbation of a component’s interface is ambiguous (in addition to 
the interference of noise, there is also no indication about the direction or speed of the 
other component’s movement), the impact of a perturbation has now been co-organized 
as a ‘contact on the left’ indicator. This change is made possible because the dynamical 
systems controlling the components are not symmetric. 
 
After the initial alignment we find that the component’s coordinated movement in one 
direction consists of continuous oscillations induced through mutual perturbation. In 
other words, the velocity of each component is adjusted such that they engage in 
structural coupling at relatively regular intervals. It was found that this ongoing mutual 
perturbation is necessary for the establishment and maintenance of the coordinated 
pattern of movement in one common direction.  
 
Can we account for the oscillating pattern in dynamical terms? Since the output of the 
‘internal’ node of each component is always saturated at 1 during oscillation we can 
focus on the dynamics of the two ‘output’ nodes. If the components are not in contact 
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with each other (Ii = 0), there is a globally attracting stable equilibrium point in activation 
space at (-3.4, -7.5). Being in this state effectively slows down rightward velocity of 
component ‘up’. Because of this the components eventually make contact. When Ii = 1 
the equilibrium point is shifted to (0.3, 1.9). This effectively speeds up the rightward 
velocity of the component.  
 
Interestingly, under normal conditions the dynamical system never reaches either of the 
two equilibrium points, because their existence is made transitory through the ongoing 
interaction. This is illustrated in Figure 2 in terms of the ‘motor’ node firing rates for 
component ‘up’ over a whole run (50 units of time). Starting from a situation of high 
activation of both ‘motor’ nodes, the system then decreases its left ‘motor’ firing rate in 
an oscillatory fashion until remains oscillating around a transitory equilibrium point. 
 

 
Figure 2: State trajectory of the outputs for the 2 ‘motor’ nodes of component ‘up’ 
during mutual (two-way) interaction. The gray and black dot represent the globally 
attracting stable equilibrium point when sensory input I = 0 and I = 1, respectively. 
 
But do these components act independently of each other or do they actually form a 
coherent system of relations? This can be tested operationally simply by recording the 
movement of component ‘down’ during a successful trial and then restarting that trial 
with the same initial conditions while playing back its recorded movement while 
component ‘up’ is allowed to interact as normally. It turns out that in the case of this 
‘playback’ regime the directed coordinated movement pattern fails to be established. 
After some initial contact between the two components they proceed to move past each 
other and head into opposite directions until the end of the trial. These two situations are 
illustrated in Figure 3. 

 

 
Figure 3: Change in relative displacement between the two components during the initial 
time steps of a trial run for two different regimes. Top: mutual (two-way) interaction. 
Bottom: playback (one-way) interaction. 
 
From this we can conclude that the evolutionary process did indeed result in the 
generation of a system whose existence depends on the active and responsive interaction 
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of its two components. On their own, the components are unable to engage in oscillatory 
movement. Moreover, once this system has been established during the initial stages of 
the trial, the system displays its own (global) coherence, which constrains the (local) 
dynamics of the components in such a way that they both move in the same direction, in a 
manner that is robust to large quantities of noise.  
 
4. Discussion 
 
Now that we have used an evolutionary robotics methodology, re-conceptualized as a 
more general generative mechanism, to produce a simulation model with dynamical 
properties which might lead to the emergence of a constitutively autonomous system we 
are faced with the task of determining whether such a system can indeed be distinguished 
within the model. In what manner would such a system manifest itself?  
 
Of course, since our model does not include any explicit aspects of the special material 
organization required for material/energetic self-construction, it clearly fails to satisfy 
that particular essential requirement for ‘basic autonomy’. But what about the possibility 
of finding a system with constitutive autonomy in a domain of abstract dynamics? One 
important clue in this regard is that in the case of the ‘basic autonomy’ of metabolism 
“the system can achieve constructive closure because it creates high-level constraints that 
act on the (low-level) individual elements, harnessing their dynamics, which in turn 
recursively produces those control constraints” (Moreno and Etxeberria 2005). Can we 
find something akin to such constructive closure in the model? 
 
4.1 A systemic analysis 
 
If we treat the two components in our model as a systemic whole then it is clearly the 
case that this whole constrains the movements of the individual components. On their 
own they will always move in opposite directions, while in combination they move into 
one of the two directions together. Moreover, this constraint harnesses the dynamics of 
the individual components in a novel manner such that they engage in oscillatory 
movement. A single component will fail to coordinate with an ‘inert’ recording of the 
other component’s movement (even if the conditions are the same as in the previous 
interaction). We are thus faced with a peculiar situation in which the oscillatory 
movement of the individual components brings forth the interaction process, and that 
interaction process enables the oscillatory movement of the individual components.  
 
The fact that this interaction process is not only constituted by but also constitutive of the 
oscillatory movement of each component points to the constitutive autonomy of the 
interaction process. But does the organization of this system fulfil Varela’s (1979, p. 55) 
operational definition (see quote in the Introduction)? First, we need to address the non-
trivial issue of what exactly constitutes a process in the system. The CTRNN components 
are clearly not created by any activity within the model. What is created, however, is 
oscillatory movement. Solitary components cannot give rise to such behavior. Thus, as a 
first approximation we might say that the transient dynamics of each component models a 
process which manifests itself through an oscillatory change in position.  
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Second, we need to show that these two processes are related in the form of a network. 
Fortunately, this criterion is more easily fulfilled as the two processes are structurally 
coupled through the interface of each component. Moreover, it has been shown that the 
two processes recursively depend on each other for their generation and realization: 
oscillatory movement is only possible when there is (two-way) structural coupling 
between the two processes. It appears that we can describe the organization of the system 
consisting of the two oscillatory processes in such a way that it fulfils criterion (1). Does 
it also satisfy criterion (2)?  
 
The problem here is that it is not quite clear what Varela means by “a unity recognizable 
in the space (domain) in which the processes exist”. What is the unity and what exactly is 
the domain? Perhaps we could consider the one-dimensional environment to be the 
domain, but how do we distinguish a unity in that domain? One way to approach this 
question is by considering some of Varela’s later writings on the topic of constitutive 
autonomy, in which he characterizes such a unity as a “selfless self” (Varela 1991): a 
coherent whole that is nowhere to be found and yet can provide an occasion for the 
coordinated activity of ensembles of processes. He considers this unity of coordinated 
activity as a point of reference for a domain of interactions in which we can distinguish 
the behavior of the system. While it would be possible to use the recurrent dependence 
between processes as the criterion to determine whether they belong or not to a 
dynamical ‘unity’, such a move would be more convincing if the model included a richer 
context than it currently does. 
 
We have already stated that the ensemble of the two processes gives rise to coordinate 
activity and that this activity manifests itself in a particular form of behavior, namely as 
oscillatory movement toward a common direction. Moreover, the interaction between the 
two oscillatory processes provides the occasion for this common movement, but in a 
manner in which that ‘whole’ cannot be located. Its existence can only be ascertained 
through operational tests, for example by observing the breakdown of coordination 
during the ‘playback’ condition. Moreover, the system as whole displays a certain 
coherence as indicated by its robustness to large amounts of external noise (cf. Froese 
and Di Paolo 2008).  
 
Due to the shift of perspective on evolutionary robotics that we have advocated we have 
been able to distinguish several important features associated with the organization of a 
system with constitutive autonomy in the evolved simulation model. Nevertheless, we 
suggest that the system does not fully satisfy all necessary criteria because of its 
impoverished domain of interactions. In particular, it is not clear that the oscillatory 
movement along the 1D space has a consequence for the unitary identity in any relevant 
sense, and the system therefore fails to satisfy Varela’s criteria (2).  
 
If we attempt to distinguish the unity in terms of it being a reference point for a 
behavioral domain that includes interaction with other unities, that is a proper cognitive 
domain, then we are at a loss because there is evidently nothing in this model with which 
the system as a whole can be said to interact in some way. For this reason the system also 
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fails to satisfy Barandiaran and Moreno’s (2006) two necessary and sufficient principles 
of identity and agency, which characterize the existence of constitutive autonomy in the 
neurodynamic domain, because the latter requires that behavioral interactions result in the 
maintenance of the identity. 
 
4.2 Future work 
 
While the system we have distinguished within the simulation model falls short of being 
adequately describable as a simple model of constitutive autonomy, these shortcomings 
are not the kind of seemingly insurmountable problems that the use of evolutionary 
robotics is commonly believed to entail. Instead, they provide the motivations for a 
research program aimed at overcoming them, for example by introducing additional 
‘background’ components into the model such that the system can interact with (and 
distinguish itself from) them. The next step would therefore be to think about how to 
change the 1D spatial environment such that it promotes the appearance of a system 
exhibiting global behavior which can be said to be necessary for the ongoing 
maintenance of the coherent systemic ‘whole’. This would also enable us to investigate 
the relationship between constitutive autonomy and adaptivity, both of which are crucial 
for the sense-making abilities of living systems (cf. Di Paolo 2005). 
 
Moreover, this approach to evolutionary robotics offers the possibility of advancing the 
mathematical formulation of constitutive autonomy, in particular because the dynamics 
of CTRNNs have already been the target of extensive study (e.g. Beer 2003; 1995). In 
this manner it might be possible to gain a deeper understanding of the general principles 
of biological organization. One possibility could be to combine this modeling approach 
with a descriptive formalism such as the hierarchy of dynamical systems proposed by 
McGregor and Fernando (2005). On the other hand, an investigation of the self-
constituting system’s dynamics could also be insightful. Bourgine and Stewart (2004), for 
example, hypothesize that the dynamics of constitutive autonomy are characterized by 
two ‘attractors’ separated by a point of bifurcation, where one ‘attractor’ must correspond 
to the disintegration of the system and the other to viable activity (see also Ono and 
Ikegami (2000) for a similar claim). Further work needs to be done in order to determine 
whether this is actually the case in the current model.  
 
However, at first sight, an interpretation of Figure 2 suggests a radical alternative to this 
view. The self-maintaining dynamics result precisely from the balancing act between two 
(potentially many) attractors that lead both to the ‘destruction’ of the dynamical pattern. 
It is precisely because the components are not falling into any of the available attractors 
that the coherence of the system maintains itself. Perhaps a similar shift of perspective 
may apply to the dynamics of autonomy in general. 
 
5. Concluding remarks 
 
When Varela and Bourgine organized the first European Conference on Artificial Life in 
1991 they hoped that it would push the field toward the study of the organization of 
biological autonomy. However, today we find that most artificial life researchers are 
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focused on synthesizing and understanding the behavioral dynamics of cognitive systems, 
while the investigation of constitutive autonomy has been largely marginalized. A large 
determining factor for this shift of focus is surely that autonomy, as the defining quality 
of all living beings, turned out to be more difficult to tackle than originally expected. 
However, it is time that the field of artificial life makes another concerted effort to 
improve our understanding of constitutive autonomy. Such an undertaking is not only 
desirable from the point of view of providing a strong foundation for systems biology, 
but is also crucial for the development and establishment of the enactive paradigm in the 
cognitive sciences (cf. Froese 2007).  
 
Fortunately, it appears that a resurgence of interest in constitutive autonomy might be 
underway in the artificial life community. The aim of this paper was to contribute to this 
new focus of interest by showing that we can take advantage of the progress that has 
already been made in using the methodology of evolutionary robotics for synthesizing 
and understanding behavioral dynamics. We have argued that this can be accomplished 
through a simple re-conceptualization of the method as a more general generative 
mechanism. While the particular model that we investigated in this paper fails to fully 
satisfy all the organizational criteria that are required for constitutive autonomy, this 
study nevertheless served to illustrate that evolutionary robotics has the potential become 
a valuable tool for investigating this most basic biological organization. 
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