Parsing Mildly Non-projective Dependency
Structures®

Carlos Gomez-Rodr guez'
Departamento de Computacion
Universidade da Coruna, Spain

cgomezr@udc.es

David Weir and John Carroll
Department of Informatics
University of Sussex, United Kingdom
{davidw, johnca}@sussex.ac.uk

December 19, 2008

Abstract

We present novel parsing algorithms for several sets of mildly non-projective de-
pendency structures.

First, we de ne a parser for well-nested structures of gap degree at most 1, with
the same complexity as the best existing parsers for constituency formalisms of
equivalent generative power. We then extend this algorithm to handle all well-nested
structures with gap degree bounded by any constant k.

Finally, we de ne a parsing algorithm for a new class of structures with gap degree
up to k that includes some ill-nested structures. This set of structures, which we call
mildly ill-nested, includes all the gap degree k structures in a number of dependency
treebanks.

1 Introduction

of predicate argument structure. We take dependency structures to be directed trees,
where each node corresponds to a word and the root of the tree marks the syntactic head
of the sentence. For reasons of e ciency, many practical implementations of dependency
parsing are restricted to projective structures, in which the subtree rooted at each word
covers a contiguous substring of the sentence. However, while free word order languages
such as Czech do not satisfy this constraint, parsing without the projectivity constraint
is computationally complex. Although it is possible to parse non-projective structures
in quadratic time under a model in which each dependency decision is independent of
all the others (McDonald et al., 2005), the problem is intractable in the absence of this
assumption (McDonald and Satta, 2007).

Nivre and Nillson (2005) observe that most non-projective dependency structures ap-
pearing in practice are \close" to being projective, since they contain only a small propor-
tion of non-projective arcs. This has led to the study of classes of dependency structures
that lie between projective and unrestricted non-projective structures (Kuhlmann and
Nivre, 2006; Havelka, 2007). Kuhlmann (2007) investigates several such classes, based
on well-nestedness and gap degree constraints (Bodirsky et al., 2005), relating them to
lexicalised constituency grammar formalisms. Speci cally, he shows that: linear context-
free rewriting systems (LCFRS) with fan-out k (Vijay-Shanker et al., 1987; Satta, 1992)
induce the set of dependency structures with gap degree at most k — 1; coupled context-
free grammars in which the maximal rank of a nonterminal is k (Hotz and Pitsch, 1996)
induce the set of well-nested dependency structures with gap degree at most k — 1; and
LTAGs (Joshi and Schabes, 1997) induce the set of well-nested dependency structures
with gap degree at most 1.

These results establish that there must be polynomial-time dependency parsing al-
gorithms for well-nested structures with bounded gap degree, since such parsers exist
for their corresponding lexicalised constituency-based formalisms. However, since most
of the non-projective structures in treebanks are well-nested and have a small gap de-
gree (Kuhlmann and Nivre, 2006), developing e cient dependency parsing strategies
for these sets of structures has considerable practical interest, since we would be able
to parse directly with dependencies in a data-driven manner, rather than indirectly
by constructing intermediate constituency grammars and extracting dependencies from
constituency parses.

We address this problem with the following contributions:

e We de ne a parsing algorithm for well-nested dependency structures of gap degree
1, and prove its correctness. The parser runs in time O(n’), the same complexity
as the best existing algorithms for LTAG (Eisner and Satta, 2000), and can be
optimised to O(n®) in the non-lexicalised case.

¢ \We generalise the previous algorithm to any well-nested dependency structure with
gap degree at most k in time O(n%+2%).

e \We generalise the previous parsers to be able to analyse not only well-nested struc-
tures, but also ill-nested structures with gap degree at most k satisfying certain

constraints?, in time O(n**3K),

e \We characterise the set of structures covered by this parser, which we call mildly
ill-nested structures, and show that it includes all the trees present in a number of
dependency treebanks.

2 Preliminaries

A dependency graph for a string wy :::wp isagraph G = (V; E), where V. = {w;

well-nested is said to be ill-nested. Note that projective trees are always well-nested,
but well-nested trees are not always projective.

2.2 Dependency parsing schemata

The framework of parsing schemata (Sikkel, 1997) provides a uniform way to describe,
analyse and compare parsing algorithms. Parsing schemata were initially de ned for
constituency-based grammatical formalisms, but Gomez-Rodr guez et al. (2008) de ne
a variant of the framework for dependency-based parsers. We use these dependency
parsing schemata to de ne parsers and prove their correctness. We will now provide
brief outlines of the main concepts behind dependency parsing schemata.

The parsing schema approach considers parsing as deduction, generating intermediate
results called items. An initial set of items is obtained from the input sentence, and the
parsing process involves deduction steps

3 The WG, parser
3.1 Parsing schema for WG,

We de ne WG;, a parser for well-nested dependency structures of gap degree < 1, as
follows:
The item set is w1 = 71 U I, with

Ty =A{[i;j;h;o;0] |i;j;heN;1<h<ml<i<j<nhZjh#i-1}

where each item of the form [i;]; h;o;¢] represents the set of all well-nested partial
dependency trees® with gap degree at most 1, rooted at wy, and such that |wh| =
{wp} UTi;j], and

L ={[i;j;h;Lr] | i;j;hkrelN;1<h<ml<i<I<r<j<n;
h#jh#i—1h#I-1h#r}

where each item of the form [i; j; h; I; r] represents the set of all well-nested partial depen-
dency trees rooted at wy, such that [wp | = {wn}U([i; J1\[I; r]), and all the nodes (except
possibly h) have gap degree at most 1. We call items of this form gapped items, and the in-
terval [I; r] the gap of the item. Note that the constraintsh # j;h Zi+1,hZI1-1;h#r
are added to items to avoid redundancy in the item set. Since the result of the expres-
sion {wp} U ([i;J]\ [I;r]) for a given head can be the same for di erent sets of values
of i;j;1;r, we restrict these values so that we cannot get two di erent items represent-
ing the same dependency structures. Items violating these constraints always have
an alternative representation that does not violate them, that we can express with a
normalising function nm(

used for all the parsers, so we do not make it explicit for subsequent schemata. Note
that initial items are separate from the item set Zyw g1 and not subject to its constraints,
so they do not require normalisation.

The set of nal items for strings of length n in WG; is de ned as the set

F=A{[L;n;h;o;0] |he N;1 < h<n};

which is the set of the items in Zyy g1 containing dependency trees for the complete input
string (from position 1 to n), with their head at any word w,.

Finally, the deduction steps of the W G, parser are the following:
Link Ungapped:
[h1; h1;h1;0;0]
[i2;§2; h2;0; 0]
1
[i2;J2;h1;0;9]
such that wp;

h2 — Wh1

of linking each of the dependent subtrees to the new head wy; (2) applying the various
Combine steps to join all of the items obtained in the previous step into a single item.
The Combine steps perform a union operation between subtrees. Therefore, the result
is a dependency tree containing all the dependent subtrees, and with all of them linked
to h: this is the subtree induced by wy. This process is applied repeatedly to build
larger subtrees, until, if the pars.9701 by

3.2.1 Soundness

Proving the soundness of the WG,

and by checking the steps one by one we can see that their constraints guarantee that
this union satis es the condition. The gap degree of the head in T; is guaranteed to
be at most 2 by this condition (1), and the gap degree of the rest of the nodes in T is
guaranteed to be < 1 because their induced subtrees are the same as in the antecedent
tree T, or Ty in which they appeared (note that, by construction of the antecedents of
Combiner steps, the only node that appears both in T, and T, is wh, so the rest of
the nodes in T can only come from one of the antecedent trees). Therefore, (2) also
holds. Regarding well-nestedness, we note that the subtree induced by the head of the
consequent tree cannot interleave with any other, and the rest of the subtrees are the
same as in the antecedent trees. Thus, since the subtrees in each antecedent tree did
not interleave among themselves (T, and T, are well-nested), the only way in which the
consequent tree could be ill-nested would be having a subtree of one antecedent tree
interleaving with a subtree of the other antecedent tree. This can be checked step by
step, and in every single Combiner step we can see that two subtrees coming from each
of the antecedent trees cannot interleave. As an example, in a Combine Closing Gap
step:
[Gishi el [lirh;opo]
[i;3;h;0;0]

In order for a subtree in the second antecedent to be able to interleave with a subtree
in the rst antecedent, it would need to have nodes in the interval [I; r] and nodes in the
set [1;i — 1] U [j + 1;n], but this is impossible by construction, since the projection of a
tree in the second antecedent is of the form {wp} U[l;r].

Analogous reasoning can be applied for the rest of the Combiner steps, concluding
that all of them preserve well-nestedness. With this we have proven (ii), and therefore
the soundness of WG1.

3.2.2 Order annotations

In the completeness proof for W G1, we will use the concept of order annotations (Kuhlmann,
2007; Kuhlmann and Mohl, 2007). Here we will outline the concept and some properties
relevant to the proof, a more detailed discussion can be found in (Kuhlmann, 2007).

Order annotations are strings that encode the precedence relation between the nodes
of a dependency tree: if we take a dependency tree with its words unordered and decorate
each node with an order annotation, we will obtain a particular ordering for the words.
Order annotations are related to projectivity, gap degree and well-nestedness: there
exists a set of order annotations that, when applied to nodes in any structure, will result
in an ordering of the nodes that satis es projectivity, and the same can be said about
the properties of well-nestedness and having gap degree bounded by a constant k. In
addition to this, order annotations are closely related to the way in which the parsers
de ned in this report construct subtrees with their Combine steps, and this will make
them useful for proving their correctness.

Let T be a dependency structure for a string wy:::wp, and wyg a node in T. Let
Wg, 1 ::Wq, be the direct dependents of wy in T, ordered by the position of the leftmost

element in their projection, i.e. min{i € IN | w; € [wq, |} <min{j € IN | w; € [wg,]} if
and only if u <v.

The order annotation for a node wy is a string over the alphabet {0;1;:::;p} U{\;"}
obtained from the following process:

e Build a string a(T;wy) = ajaz:::an, Where ax = 0, ai = u if i € [wg,], and
ai =\," (comma) otherwise (i.e. if i € [wg]).

e The order annotation for wy, o(T;wy), is the string obtained by collapsing all
adjacent occurences of the same symbol in a(T;wy) into a single occurence, and
removing all leading and trailing commas.*

By construction, order annotations have the following property:

Property 1. If the order annotation for a node wy is a string o(T; wy) = 01:::0q, then
there exist unique natural numbers iy <ip;::: <lg+1 such that:

e |If the symbol O appears in position v in o(T;wy), then i, = k and Iy+1 = k + 1.

projection of the sth dependent of wy in T is {[iv,;iv;+1 — 1]} U {[iv,; iv,+1 — 1]} U
s U A, fve+1 — 1]}

In particular, it can be checked that i is always the index associated to the leftmost
node in Wy, ig+1 the index associated to the rightmost node in [wy] plus 1, and for
each iy such that 1 <v < g, the di erences d, = (iy — i1) correspond to the positions in
the intermediate string a(T;wyg) such that the d,th symbol in a(T;wy) di ers from the
(dy + 1)th.

By using this property to reason about the projections of a dependency tree’s nodes,
we can show the following, more particular properties:

Property 2.

A node wy has gap degree g in a dependency structure T if, and only if, the comma
symbol (;) appears g times in o(T;wg).

(Corollary 1) The gap degree of a dependency structure T is the maximum value among
the number of commas in the order annotations of each of its nodes.

(Corollary 2) A dependency structure is projective if, and only if, none of the order
annotations associated to its nodes contain a comma.

Property 3. If a number s € (IN\ {0}) appears g + 1 times in an order annotation
o(T;wg), then the sth direct child of wyx (in the ordering mentioned earlier) has gap
degree g, and therefore the dependency structure T has gap degree at least g.

Property 4. A dependency structure T is ill-nested if, and only if, it contains at least
one order annotation of the form :::a:::b:::a:::b:::, for some a;b € (IN \ {0}). Oth-
erwise, T is well-nested.

These properties allow us to de ne the sets of structures verifying well-nestedness
and/or bounded gap degree only in terms of their order annotations. Sets that can be
characterized in this way are said to be algebraically transparent (Kuhlmann, 2007).

3.2.3 Completeness

Proving completeness of the W G; parser is proving that all correct nal items are valid.
We will show this by proving the following, stronger claim:

Lemma 1. Let T be a valid partial dependency tree headed at a node wy. Then:

e (a) If |wn| = {wnh} U[i;j], then the item [i;J; h; ;<] containing T is valid under
this parser.

o (b) If (wn] = {wn}U([i;J]\[I;r]), then the item [i;j;h;I; r] containing T is valid
under this parser.

It is clear that this lemma implies the completeness of the parser. a nal item
[1; n; h; ;0] is correct only if it contains a tree rooted at wy, with gap degree < 1 and
projection [1;n]. Such a tree is in case (a) of Lemma 1, implying that the correct nal
item [1; n; h;o; o] is valid. Therefore, this lemma implies that all correct nal items are
valid, and therefore that that WG, is complete.

3.2.4 Proof of Lemma 1

We will prove Lemma 1 by induction on #(|wp]). In order to do this, we will show that
Lemma 1 holds for valid trees T rooted at wy, such that #(|wp|) = 1, and then we will
prove that if Lemma 1 holds for every valid tree T? such that #(|wh]) < N, then it also
holds for all trees T such that #(|wn]|) = N.

Base case LetT

We know that p > 1 because if #(|wp]) > 1, then w, must have at least one dependent.
We now consider two cases: p = 1 and p > 1. In the case where p = 1, consider the
subtree of T induced by wg,. Since #(|wq, |) = N —1, we know by induction hypothesis
that the item corresponding to this tree is valid. This item is:

o [i;j;dy;0;0], if |wg, | is of the form {wg, } U[i;j], with d; € [i;jI°. In this case,
applying a Link step to this item and the initial item [h; h; h; ;o] (which is valid
by de nition), with the D-rule wy, — wp (which must exist in order for T to be
valid); we obtain [i; J; h; o; ¢], which is the item corresponding to wy, by Lemma 1.

e [i;j;d1; h;h], if [wy, | is of the form {wg, } U([i;j]\ {wn}). In this case, applying a
Link step to this item and the initial item [h; h; h; o; ¢] (which is valid by de nition),
with the D-rule wy, — wy, (which must exist, as in the previous case); we obtain
[i;j; h; ;©]®, which is the item corresponding to wy by Lemma 1.

o [i;j;dq; I;r], if [wy, | is of the form {wg, }U([i; J]\[I; r]). In this case, applying a Link
step to this item and the initial item [h;h; h;o;¢] (which is valid by de nition),
with the D-rule wy, — wp; we obtain [i; j; h; I; r]; which is the item corresponding
to wy by Lemma 1.

With this, we have proven the induction step for the case where p = 1 (the head node
of our partial dependency tree has a single direct child). It now remains to prove it for
p > 1 (the head node has more than one direct dependent).

In order to show this, let o(T; wp) be the order annotation associated to the head node
Wh in tree T. By construction, O(T;wp) must be a string of symbols in the alphabet
{0}u{1}u:::U{p}U{; }; containing a single appearance of the symbol 0. Additionally, by

o (Vi) ;0;

Note that, by Property 2 of order annotations, the rst case corresponds to a tree
where the head has gap degree 0, in the next two cases the head has gap degree 1, and
the last three are the cases where the gap degree of the head is 2: in these three latter
cases, the constraint that |wp | must be of the form {wy} U ([i;j] \ [I; r]) for the tree T
to be valid implies that the symbol O representing the head in the annotation must be
surrounded by commas: if we have a gap degree 2 annotation of any other form (for
example 0; ; , for nonempty); the projection of wy, does not meet this constraint.
This can be seen by using Property 1 of order annotations to obtain this projection.

Taking these considerations into account, we will now divide the proof in di erent
cases and subcases based on o(T;wp), starting with its rst symbol:

1. If o(T;wp) begins with the symbol 1:
a) If there are no more appearances of the symbol 1 in o(T;wp):
Then we consider the following trees:

e T1: The tree obtained by taking the subtree induced by wy, (which by
Property 1 must have a yield of the form [i; j], as the symbol 1 appears
only once in o(T; wp)), and adding the node wy, and dependency wy, — Wp

to it.

e T,: The tree obtained by taking the union of subtrees induced by wg, : ::wq,,
and adding the node w, and dependencies Wq, — Wh;::1;Wg, — Wh 10
it.

And we divide this case into three further cases:

i. If o(T;wp) does not contain any comma: Then, by Property 17, the
projection of wy in T, will be of the form [j + 1;k] U {wy}. By applying
the induction hypothesis to T1 and T, we know that the items [i; J; h; ¢;]
and [j +1;k; h; ¢o; ¢] are valid. Therefore, the item [i; k; h;¢; o] is also valid
because it can be obtained from these two items by applying a Combine
Ungapped step. As in this case the projection of wy in T is [i; K] U [h],
this item [i; k; h;o; o] is the item containing the tree T, and its validity
proves Lemma 1 in this particular subcase.

ii. Ifo(T;wyp) contains at least one comma, and the second symbol in o(T; wp)
is a comma: Then o(T;wy) must be of the form (ii), (v) or (vi); and the
projection of wy, in T, will be of the form [iz; K] U {wp}, for i; > j + 1.
Therefore, we know by the induction hypothesis that the items [i; j; h; o; <]
(for T1) and [iz; k; h; ¢;¢] (for T») are valid, and by applying Combine
Opening Gap to these items, we obtain [i; k; h; j + 1;i, — 1], which is the
item containing the tree T.

In the remainder of the proof, we will always use Property 1 of order annotations to relate them to
projections; so we will not mention it explicitly in subsequent cases.

13

iii. 1fo(T;wp) contains at least one comma, but the second symbol in o(T; wp)
is not a comma:

A. First, in the case that o(T;wyp) contains exactly one comma, then
it is of the form 1 1; », where either 1 or , contains the symbol
0 and neither of them is empty. In this case, we can see that the
projection of wy in Ty is of the form {wp} U[j +1;1 —1JU[r +1; K], so
by induction hypothesis the item [j + 1;k; h; I; r] is valid. We apply
Combine Keeping Gap Right to [i; J; h; ¢; ¢] (which is valid by T; as
in the previous cases) and [j +1; k; h; I; r] to obtain [i; k; h; I; r], which
is the item containing T.

B. Second, in the case where o(T;wp) contains two commas, then it is
of the form 1 1;0; > or 1 1; »;0. Then the projection of wy in T,
will again be of the form {w,} U[J +1;1 — 1] U [r + 1;K], so we can
follow the same reasoning as in the previous case to show that the
item [i; k; h; I; r] containing T is valid.

b) If there is a second appearance of symbol 1 in o(T;wp): Then o(T;wy) is of
the form 1 11 ,. Due to the well-nestedness constraint, we know that there
is no symbol s € {1} U{2} U:::U{p} that appears both in 1 andin . This
allows us to consider the following trees:

e T1: The tree obtained by taking the subtree induced by wy, (which must
have a yield of the form [i; | — 1JU[r +1; j], as the symbol 1 appears twice
in o(T;wp)), and adding the node wy and dependency wgy, — Wy, to it.

e T,: The tree obtained by taking the union of subtrees induced by Way, - Wiy, »
where by : :: by are the non-comma, non-zero symbols appearing in 1, and

bg — Wh to It.

e T3: The tree obtained by taking the union of subtrees induced by wg,_ :: :Wdgq »
where ¢y : :: cq are the non-comma, non-zero symbols appearing in >, and
adding the node wy, and dependencies W, — Wh; 111 Wdg, — Wh to it.

Note that To or T

A. If Tz is empty (2 is empty except for a possible 0 symbol), then we
are done, as [i; j; h; o; <] is already the item containing the tree T.

B. If ; does not contain a comma, then the projection of wy in T3 is
of the form {wn} U[j + 1;k], so by induction hypothesis the item
[+1;k; h;o;¢] is valid. By applying Combine Ungapped to this item
and , we obtain [i; k; h; ¢; <], the item containing the tree T.

C. If , contains one or two commas, then the projection of wy in T3
is of the form {wp} U[j + 1;1' — 1] U [r’ + 1;m], and by induction
hypothesis, [j + 1;k; h; 1% r"] is valid. By applying Combine Keeping
Gap Right to this item and , we get that [i; k; h; 1% r'] is valid, and
this is the item containing the tree T in this case.

ii. If 1 contains asingle symbol, and it is a comma: In this case, T, is empty,

but we know that T3 must be nonempty (since p > 1) and it must either
have no commas, or be of the form 3;0, corresponding to the expression
(V). In any of these cases, we know that the projection of wy, in T3 will be
of the form {wp } U[j +1;k]. Therefore, applying the induction hypothesis
to T1 we know that the item [i; j; h;1I; r] is valid, and with T3 we know
that [j +1;K; h; ¢; ¢] is also valid. By applying the Combine Keeping Gap
Left step to these two items, we obtain [i; k; h; I; r], the item containing
the tree T.

If 1 is of the form \; 3", where 3 is not empty and does not contain
commas: then, by construction and by the well-nestedness constraint, we
know that the projection of wy, in T is of the form {wn} U [I%; r], with
I < 1" < r; so the items [i; j; h;1;r] (for T1) and [I% r; h; ;<] (for T,) are
valid. By applying Combine Shrinking Gap Right to these two items, we
obtain that = [i; j; h;1;1°—1] is a valid item. Now, if » is empty, we are
done: is the item containing the tree T. And if ; is nonempty, then it
must either contain no commas, or be of the form 4; 0 (corresponding to
the expression (v)). In any of these cases, we know that the projection of
W in T3 will be of the form {wp } U[j +1;Kk]. So, by induction hypothesis,
the item [j + 1; k; h; ;<] is valid; and by applying Combine Keeping Gap
Left to and this item we obtain that [i; k; h;1;1° — 1] is valid: this is the
item containing the tree T in this case.

iv. If 1 is of the form \ 3;", where 3 is not empty and does not contain

commas, this case is symmetric with respect to the last one: in this case,
the projection of wy, in Ty is of the form {w,}U[l; r"], with | < r’ <r; and
the step Combine Shrinking Gap Left

contain commas: in this case, by construction and by the well-nestedness
constraint, we know that the projection of wy in T, is of the form {wp} U
[1;1°—1]uUr'+1;r], with | < I' < r? < r. With this, this case is analogous
to the previous two cases: from T; we know that the item [i; J; h;l;r] is
valid, and we combine it with the item [I; r; h; 1% r%] (from T,), in this case
using Combine Shrinking Gap Centre. With this, we obtain that the item
= [i;j; h; 1% Y is valid. If ; is empty, this is the item containing the
tree T. If not, we make the same reasoning as in the two previous cases
to conclude that the item [j +1;K; h; ¢; ¢] is valid, and we combine it with
by the Combine Keeping Gap Left step to obtain [i; k; h; 1% r], the item
containing T.
vi. If 1 contains two commas: in this case, by construction of the valid tree

T, 1 must be of the form 3;0; 4, where 3 and 4 may or may not be
empty. So we divide into subcases:

A. If 3and 4 are both empty, we apply the same reasoning as in case
1-b-ii, except that in this case we know that , cannot contain any
commas.

B. If 3isempty and 4 is nonempty, we apply the same reasoning as in
case 1-b-iii, except that in this case we know that , cannot contain
any commas.

C. If szisnonempty and 4 is empty, we apply the same reasoning as in
case 1-b-iv, except that in this case we know that , cannot contain
any commas.

D. If neither 3 nor 4 are empty, we apply the same reasoning as in
case 1-b-v, except that in this case we know that » cannot contain
any commas.

2. If o(T; wyp) begins with the symbol O:

a) If o(T;wp) begins with 01, we can apply the same reasonings as in case 1,
because the expressions for the projections do not change.

b) If o(T;wp) begins with 0 followed immediately by a comma, then we have an
annotation of the form (iv): 0; ; . In this case, we can apply symmetric
reasoning considering the last symbol of o(T;wy,) instead of the rst (note
that the case ; ;0 has already been proven as part of case 1, and all the
steps in the schema are symmetric).

As this covers all the possible cases of the order annotation o(T;wy), we have com-
pleted the proof of the induction step for Lemma 1, and this concludes the proof of
completeness for the WG, parsing schema.

16

3.3 Computational complexity

The time complexity of WGy is O(n’), as the step Combine Shrinking Gap Centre works
with 7 free string positions. This complexity with respect to the length of the input is as
expected for this set of structures, since Kuhlmann (2007) shows that they are equivalent
to LTAG, and the best existing parsers for this formalism also perform in O(n’) (Eisner
and Satta, 2000). Note that the Combine step which is the bottleneck only uses the 7
indexes, and not any other entities like D-rules, so its O(n’) complexity does not have
any additional factors due to grammar size or other variables. The space complexity of
the parser is O(n®), due to the 5 indexes in items.

It is possible to build a variant of this parser with time complexity O(n®), as with
parsers for unlexicalised TAG, if we work with unlexicalised D-rules specifying the pos-
sibility of dependencies between pairs of categories instead of pairs of words. In order to
do this, we expand the item set with unlexicalised items of the form [

An item [i;j; h;[(11;r1); 005 (Igs rg)]] represents the set of aléwell—nested partial de-
pendency trees rooted at wy such that |wy| = {wn} U ([i;j]\ gzl[lp; r

As expected, the WG; parser corresponds to WG, when we make k = 1. WGy works
in the same way as WG1, except for the fact that Combine steps can create items with
more than one gap.

4.2 Proof of correctness for WGy

The proof of correctness for WGy is analogous to that of WGy, but generalising the
de nition of valid trees to a higher gap degree. A valid tree in WGy can be de ned as
a partial dependency tree T, headed at wy, such that

e (1) |wp] is of the form {wnh} U ([i;J]\ Sgzl[lp; rp]), with 0 <g <K,

e (2) All the nodes in T have gap degree at most k except for wy, which can have
gap degree up to k + 1.

With this, we can de ne correct items and correct nal items analogously to their
de nition in WG;.

Soundness is proven as in W Gy changing the constraints for nodes so that any node
can have gap degree up to k and the head of a correct tree can have gap degree k + 1,
the same reasonings can be applied to this case.

Completeness is proven by induction on #(|wp]), just as in WG;. The base case is
the same as in WG3, and for the induction step, we also consider the direct children
W, ©:1Wq, in Wh. The case where p = 1 is proven by using Linker steps just as in WG;.
In the case for p > 1, we also base our proof in the order annotation o(T;wy), but we
have to take into account that the set of possible annotations is larger when we allow
the gap degree to be greater than 1, so we must take into account more cases in this
part of the proof.

In particular, an order annotation o(T;wp) for a valid tree for WGk can contain up
to

same way, the cases in which we used Combine Keeping Gap steps in the proof for WG,
are solved by using the general Combine Keeping Gap step in W Gy.

4.3 Computational complexity

The WGy parser runs in time O(n>*2): as in the case of WG, the deduction step with
most free variables is Combine Shrinking Gap Centre, and in this case it has 5 + 2k
free indexes. Again, this complexity result is in line with what could be expected from
previous research in constituency parsing: Kuhlmann (2007) shows that the set of well-
nested dependency structures with gap degree at most k is closely related to coupled
context-free grammars in which the maximal rank of a nonterminal is k + 1; and the
constituency parser de ned by Hotz and Pitsch (1996) for these grammars also adds an
n? factor for each unit increment of k. Note that a small value of k should be enough
to cover the vast majority of the non-projective sentences found in natural language
treebanks. For example, the Prague Dependency Treebank contains no structures with
gap degree greater than 4. Therefore, a WG4 parser would be able to analyse all the
well-nested structures in this treebank, which represent 99:89% of the total. Increasing
k beyond 4 would not produce further improvements in coverage.

5 Parsing ill-nested structures

The WGy parser analyses dependency structures with bounded gap degree as long as they
are well-nested. This covers the vast majority of the structures that occur in natural-
language treebanks (Kuhlmann and Nivre, 2006), but there is still a signi cant minority
of sentences that contain ill-nested structures. Unfortunately, the general problem of
parsing ill-nested structures is NP-complete, even when the gap degree is bounded: this
set of structures is closely related to LCFRS with bounded fan-out and unbounded pro-
duction length, and parsing in this formalism has been proven to be NP-complete (Satta,
1992). The reason for this high complexity is the problem of unrestricted crossing con g-
urations, appearing when dependency subtrees are allowed to interleave in every possible
way. However, just as it has been noted that most non-projective structures appearing
in practice are only \slightly" non-projective (Nivre and Nilsson, 2005), we characterise
a sense in which the structures appearing in treebanks can be viewed as being only
\slightly" ill-nested. In this section, we generalise the algorithms WG; and WGy to
parse a proper superset of the set of well-nested structures in polynomial time; and
give a characterisation of this new set of structures, which includes all the structures in
several dependency treebanks.

5.1 The MG; and MG parsers

The WGy parser for well-nested structures presented previously is based on a bottom-up
process, where Link steps are used to link completed subtrees to a head, and Combine
steps are used to join subtrees governed by a common head to obtain a larger structure.
As WGy is a parser for well-nested structures of gap degree up to k, its Combiner steps

20

correspond to all the ways in which we can join two sets of sibling subtrees meeting these
constraints, and having a common head, into another. Therefore, this parser does not
use Combiner steps that produce interleaved subtrees, since these would generate items
corresponding to ill-nested structures.

We obtain a polynomial parser for a wider set of structures of gap degree at most
k, including some ill-nested ones, by having Combiner steps representing every way in
which two sets of sibling subtrees of gap degree at most k with a common head can be
joined into another, including those producing interleaved subtrees, like the steps for
gap degree 1 shown in Figure 1. Note that this does not mean that we can build every
possible ill-nested structure: some structures with complex crossed con gurations have
gap degree k, but cannot be built by combining two structures of that gap degree. More
speci cally, our algorithm will be able to parse a dependency structure (well-nested or
not) if there exists a binarisation of that structure that has gap degree at most k. The

[i;3;h; 1 r]

[aghibr] | | [k; b m: j]
. - Bkhir+1;j] Combine Interleaving Gap C: ———— ==
Combine Interleaving: T [i;k; h;m;r]
L1 k5 h; 05 0] such that m<r+1,
[i;5:h;15r] [i;3:h; 15 r]
. . [l k;h;r+1;u] . . [k;m; h;r +1; j]
Combine Interleaving Gap L: — - Combine Interleaving Gap R: —
[i;k;h;j +1;u] [i;m;h; 1k — 1]
such that u > j, such that k > 1.
Figure 1: Additional steps to turn WG, into MG;.
[i:’sll; i_ap"'l -1 h; [(i_al"'l; iaz - 1); ey (iap—1+1; iap - 1)]]
[iby; ibg+1 — 1505 [y 415 T, —)5 0005 (g +15 o — D]
[iminai:ba)s imax(ap+1;bq+1) = Lh;[(ig,;ig,+1 — 1);:075 (g, s ige+1 — 1)]]

for each string of length n with a’s located at positions a; :::ap(1 < a; <:::<ap <n),
b’s at positions by :::bg(1 < by < :::< by < n), and g’s at positions g1 :::9,(2 < g1 <
r<gr<n-1),suchthat 1 <p<k,1<qg<k,0<r<k-1,p+qg+r=n,and the
string does not contain more than one consecutive appearance of the same symbol.

Figure 2: Gen0

In order to generalise this algorithm to mildly ill-nested structures for gap degree Kk,
we need to add a Combine step for every possible way of joining two structures of gap
degree at most k into another. This can be done in a systematic way by considering a set
of strings over an alphabet of three symbols: a and b to represent intervals of words in
the projection of each of the structures, and g to represent intervals that are not in the
projection of either of the structures, and will correspond tocoln

dependent of wy in T. These properties of binarisations will be used throughout the
proof.

As for the previous algorithms, we will start the proof by de ning the sets of valid
trees and correct items for this algorithm, which we will use to prove soundness and
completeness.

Let T be a partial dependency tree headed at a node wy,. We will call such a tree a
valid tree for the algorithm W Gy if it satis es the following:

e (1) |wp] is of the form {wn} U ([i;J]\ Sg:l[lp; rpl), with 0 < g <K,

e (2) There exists a binarisation of T such that all the nodes in it have gap degree
at most k except for its root node, which can have gap degree up to k + 1.

Note that, since by property (ii) a binarisation cannot decrease the gap degree of a
tree, condition (2) implies that all the nodes in T must have gap degree at most k except
for wp, which can have gap degree at most k + 1.

That is, the de nition of a valid tree in this case is as in W G, but changing the well-
nestedness constraint to the weaker requirement of having a binarisation of gap degree
k (except for the particular case of the root node, which can have gap degree k +1). As
in WG; and WGy, we will say that an item is correct if it contains some valid tree T
licensed by a set of D-rules G, and throughout the proof we will suppose that all items
are normalised.

Given an input string wi:::wp, a correct nal item for MGy will have the form
[1; n; h; []], and contain at least one valid tree T rooted at a head wy and with |wy| =
[1; n], which is a complete parse for the input. Since in a tree contained in an item of
this form the projection of the head cannot have any gaps and thus the head has gap
degree 0, we have that there exists a binarisation of T such that every one of its nodes,
including the head, has gap degree at most k. Therefore, T is mildly ill-nested for gap
degree k

and linking the head of the antecedent tree to it, for Link steps, and by considering the
union of the trees corresponding to the antecedents, for Combine steps.

We can show that the resulting tree is licensed by G and that it satis es the condition
(1) of a valid tree in the same way as we did in WG; and W Gg. So, to prove soundness,
it only remains to show that the resulting tree has a binarisation verifying the gap degree
constraint (2).

To prove this, we show that a binarisation satisfying (2) of the tree corresponding
to the consequent item can be constructed from the corresponding binarisations of the
antecedent items. We will prove the stronger claim that such a binarisation can be
constructed, with the additional constraints that: (3) its root node must be labelled
(therefore, by one of the properties of binarisations, its label corresponds to the head
node of the original tree) and can have at most one direct child, and that (4) the
binarisation can only contain more than one nod%IabeIIed Wy, if the item is of the form
[i;3; h; [(11; r1) -2 (Ig; rg)]] such that wy € ([i; j]\ 8=1[lp: rpl).

In the case of each Link step adding a link wg — wp, such a binarisation can be
constructed by taking the binarisation B, corresponding to the non-initial antecedent
item, and linking its head to a new node labelled wy,. The resulting tree is a binarisation
of the consequent tree, and it satis es (2) because the head can have gap degree at most
k +1 (by construction of the antecedents of Link steps, the antecedent item must have a

Proposition 1. Let T be a partial gependency tree headed at node wy, and valid for
MGg. Then, if [wn | = {wpn }U([i; j]\ —1[lp; rp]), for p <k, the item [i; j; h; (It; ro); o: 05 (Ig; rg)]
containing T is valid under this parser

It is clear that this proposition implies the completeness of the parser: a nal item
[1;n;h;[]] is correct only if it contains a tree rooted at wy, valid for MGy and with
projection |wp| = [1;n]. By Proposition 1, having such a tree implies that the correct

nal item [1; n; h;[]] is valid. Therefore, this lemma implies that all correct nal items
are valid, and thus that M Gy is complete.

Since valid trees for the M Gy parser must be mildly ill-nested for gap degree k, every
valid tree must have at least one binarisation where every node has gap degree < k
except possibly the head, that can have gap degree k + 1. We will call a binarisation
satisfying this property a well-formed binarisation for M Gy.

Using this, we can prove Proposition 1 if we prove the following lemma:

Lemma 2. Let B be a well-formed binarisation of a partial dependency tree T, headed
at node wy an valid for MGg. If the projection of w, in T is |Wh|t = [Wh|g =
{wnh} U ([i;J1\ p —1[lp; rpl), for p <k, the item [i; j; h; (I1;r1); i1 25 (lg; rg)] containing T
is valid under this parser.

5.3.3 Proof of Lemma 2

We will prove this lemma by induction on the number of nodes of B (denoted #B).
In order to do this, we will show that Lemma 2 holds for well-formed binarisations B
of trees T rooted at wy such that #B = 1, and then we will prove that if Lemma 2
holds for every well-formed binarisation B" such that #B" < N, then it also holds for
binarisations B such that #B = N.

Base case Let B be a well-formed binarisation of a partial dependency tree T, rooted
at a node wy and valid for M Gy, and such that #B = 1. In this case, since B has only
one node, it must be a binarisation of the trivial dependency tree consisting of the single
node wyn. Thus, Lemma 2 trivially holds because the initial item [h; h; h; [J]] contains this
tree, and initial items are valid by de nition.

Induction step Let B be a well-formed binarisation of some partial depengency tree T,
headed at node wy, and valid for MGy, such that |wp |t = {wn} U ([i;J]\ p 1lp; rp]))
and #B = N; and suppose that Lemma 2 holds for every well-formed binarisation B’
of a tree T" such that #B’ < N. We will prove that Lemma 2 holds for B.

In order to do this, we consider di erent cases depending on the number and type of
children of the head node labelled wy, in B:

e If w, has a single child in B, and it is a node labelled wq (Wq # wp): then,
the subtree B? induced by wy in B is a binarisation of some tree T’ such that
(Wq |1/ = [Wh]T \ {Wh} (note that no nodes labelled wy, can appear in B, since w,
cannot be a dependent of wy). As #B’ < N and B’ is well-formed because all its

27

nodes are non-head nodes of B; by applying the induction hypothesis, we obtain
that the item = [i;j;d; (I13;r1);:::; (Ig; rg)] (which contains TY by construction)

and the initial item [h; h; h; ()] by a Link step, and therefore it is valid, so we have
proven Lemma 2 in this case.

If w, has a single child in B, and it is an unlabelled node: call this unlabelled
node n. Then, the subtree B! obtained from removing n from B and linking its
children directly to wy, is a binarisation of the same tree as B. We know that B’
is well-formed because its non-head nodes have the same projections as in B and
therefore must have gap degree < k and, as B is well-formed, n has gap degree
< k, so the subtree created by linking the children of n to wy can have gap degree
at most k+1, and it only will have degree k+1 if [wp |g’ \ {wn} has k gaps. As B
and B? are well-formed binarisations of the same tree, if Lemma 2 holds for B, it
also must hold for B. As we know that #B? < N (since it contains one less node
than B), Lemma 2 holds for B! by the induction hypothesis, so this case is proven.

If w, has a single child in B, and it is a node labelled wy: then, the subtree B!
induced by this single child node is a binarisation of the same tree as B. We know
that B? is well-formed because its nodes have the same projections as they had in
B, and therefore they must all have gap degree < k by the well-formedness of B.
Reasoning as in the previous case, since B and B are binarisations of the same
tree and we know that Lemma 2 holds for B for the induction hypothesis, this
implies that it holds for B as well.

If wy, has two children in B: in this case, regardless of whether the direct children
of wy, are labelled or unlabelled nodes, we call them c¢; and c, and consider two
partial dependency trees B} and B):

{ B} is the tree obtained by taking the subtree induced by c; and linking its
head ¢; to wp,

{ B} is the tree obtained by taking the subtree induced by c, and linking its
head ¢, to wp.

We know that all the nodes in B} and B}, except for the head, must have gap

Structures
Language Nonprojective
Total By gap degree By nestedness
Total | Gap Gap Gap Gap Well- Mildly Strongly
deg. 1 deg. 2 deg. 3 d >3 Nested II-Nest. | IlI-Nest.
Arabic | 2995 205 189 13 2 1 204 1 0
Czech | 87889 | 20353 19989 359 4 1 20257 96 0
Danish | 5430 864 854 10 0 0 856 8 0
Dutch | 13349 | 4865 4425 427 13 0 4850 15 0
Latin | 3473 | 1743 1543 188 10 2 1552 191 0
Portuguese | 9071 | 1718 1302 351 51 14 1711 7 0
Slovene | 1998 555 443 81 21 10 550 5 0
Swedish | 11042 | 1079 1048 19 7 5 1008 71 0
Turkish | 5583 685 656 29 0 0 665 20 0

Table 1: Counts of dependency trees classi ed by gap degree, and mild and strong ill-nestedness
(for their gap degree); appearing in treebanks for Arabic (Hajic et al., 2004), Czech
(Hajic et al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al., 2002), Latin
(Bamman and Crane, 2006), Portuguese (Afonso et al., 2002), Slovene (Dzeroski et al.,
2006), Swedish (Nilsson et al., 2005) and Turkish (O azer et al., 2003; Atalay et al.,
2003).

for g1;92 < k+ 1. We also know that the union of the projections of wy, in T! and
T} is the union of g; < k + 1 intervals, and is the same as the projection of w,
in T. Therefore, as the indexes of the Combiner steps in MGy

Figure 3: One of the smallest strongly ill-nested structures. This dependency structure has gap
degree 1, but is only mildly ill-nested for gap degree > 2.

Even if a structure T is strongly ill-nested for a given gap degree, there is always some
m € IN such that T is mildly ill-nested for m (since every dependency structure can

to the way the MGy parser works, since it implicitly nds such a binarisation. An inter-

Carlos Gomez-Rodr guez, John Carroll, and David Weir. A deductive approach to depen-
dency parsing. In Proceedings of the 46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies (ACL’08:HLT), pages 968{976.
Association for Computational Linguistics, 2008.

Jan Hajic, Otakar Smrz, Petr Zemanek, Jan Snaidauf, and Emanuel Beska. Prague
Arabic dependency treebank: Development in data and tools. In Proceedings of the
NEMLAR International Conference on Arabic Language Resources and Tools, pages
110{117, 2004.

Jan Hajic, Jarmila Panevova, Eva Hajicova, Jarmila Panevova, Petr Sgall, Petr Pajas,
Jan Stepanek, Jir Havelka, and Marie Mikulova. Prague dependency treebank 2.0
(Idc2006t01). CDROM CAT: LDC2006T01., ISBN 1-58563-370-4, 2006.

Jir Havelka. Beyond projectivity: Multilingual evaluation of constraints and measures
on non-projective structures. In ACL 2007: Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics, 2007.

Gunter Hotz and Gisela Pitsch. On parsing coupled-context-free languages.
Theor. Comput. Sci., 161(1-2):205{233, 1996. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/0304-3975(95)00114-X.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars, 1997.

Matthias T. Kromann. The danish dependency treebank and the underlying linguistic
theory. In Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories
(TLT), 2003.

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars. Doctoral disser-
tation, Saarland University, Saarbrucken, Germany, 2007.

Marco Kuhlmann and Mathias Mohl. Mildly context-sensitive dependency languages. In
45th Annual Meeting of the Association for Computational Linguistics (ACL), Prague,
Czech Republic, 2007.

Marco Kuhlmann and Joakim Nivre. Mildly non-projective dependency structures. In
Proceedings of the COLING/ACL on Main conference poster sessions, pages 507{514,
Morristown, NJ, USA, 2006. Association for Computational Linguistics.

Ryan McDonald and Giorgio Satta. On the complexity of nonprojective data-driven
dependency parsing. In IWPT 2007: Proceedings of the 10th Conference on Parsing
Technologies. Association for Computational Linguistics, 2007.

Ryan McDonald, Fernando Pereira, Kiri295(r-422(Kil(c)51(R8)28(ereira,)-422(Kd4fs0y)28(an)-44rkd [(C:

